Descriptions of MBA Level Courses

STAT6130 - Regr Analysis For Bus (Course Syllabus)

This course provides the fundamental methods of statistical analysis, the art and science if extracting information from data. The course will begin with a focus on the basic elements of exploratory data analysis, probability theory and statistical inference. With this as a foundation, it will proceed to explore the use of the key statistical methodology known as regression analysis for solving business problems, such as the prediction of future sales and the response of the market to price changes. The use of regression diagnostics and various graphical displays supplement the basic numerical summaries and provides insight into the validity of the models. Specific important topics covered include least squares estimation, residuals and outliers, tests and confidence intervals, correlation and autocorrelation, collinearity, and randomization. The presentation relies upon computer software for most of the needed calculations, and the resulting style focuses on construction of models, interpretation of results, and critical evaluation of assumptions.

Prerequisites: STAT 6110

STAT6210 - Acc Regression Analysis (Course Syllabus)

STAT 6210 is intended for students with recent, practical knowledge of the use of regression analysis in the context of business applications. This course covers the material of STAT 6130, but omits the foundations to focus on regression modeling. The course reviews statistical hypothesis testing and confidence intervals for the sake of standardizing terminology and introducing software, and then moves into regression modeling. The pace presumes recent exposure to both the theory and practice of regression and will not be accommodating to students who have not seen or used these methods previously. The interpretation of regression models within the context of applications will be stressed, presuming knowledge of the underlying assumptions and derivations. The scope of regression modeling that is covered includes multiple regression analysis with categorical effects, regression diagnostic procedures, interactions, and time series structure. The presentation of the course relies on computer software that will be introduced in the initial lectures. Recent exposure to the theory and practice of regression modeling is recommended.

STAT7010 - Modern Data Mining (Course Syllabus)

Modern Data Mining: Statistics or Data Science has been evolving rapidly to keep up with the modern world. While classical multiple regression and logistic regression technique continue to be the major tools we go beyond to include methods built on top of linear models such as LASSO and Ridge regression. Contemporary methods such as KNN (K nearest neighbor), Random Forest, Support Vector Machines, Principal Component Analyses (PCA), the bootstrap and others are also covered. Text mining especially through PCA is another topic of the course. While learning all the techniques, we keep in mind that our goal is to tackle real problems. Not only do we go through a large collection of interesting, challenging real-life data sets but we also learn how to use the free, powerful software "R" in connection with each of the methods exposed in the class. Prerequisite: two courses at the statistics 4000 or 5000 level or permission from instructor.

STAT7050 - Stat Computing with R (Course Syllabus)

The goal of this course is to introduce students to the R programming language and related eco-system. This course will provide a skill-set that is in demand in both the research and business environments. In addition, R is a platform that is used and required in other advanced classes taught at Wharton, so that this class will prepare students for these higher level classes and electives.

Prerequisites: STAT 6130 OR STAT 6210

STAT7100 - Data Collect & Acquisit (Course Syllabus)

This course will give students a solid grasp of different data collection strategies and when and how they can be applied in practice. At the same time, important current ideas such as data confidentiality and ethical considerations will be addressed. The students will have designed and fielded a sample survey and designed and fielded an online experiment (A/B test). Student will collect data through web scraping activities and/or using an API. Students will summarize their collected data and subsequent inferences, culminating with an in-class presentation. The course is structured in two parts. The first part is a "Strategies" component that addresses different data collection strategies. It will discuss sample designs, experimentation, and observational studies. The second part of the course is about "Platforms" and goes into the practicalities of the implementation of the different strategies. Given the data science perspective of this course, this is focused on web enabled approaches. Familiarity with either R or Python is expected and specifically the R-Studio or Jupyter notebooks platforms. Courses such as Stat 7050 or Stat 7770 would meet this requirement. Statistics, through the level of multiple regression is required. This requirement may be fulfilled with MBA courses such as Stat 6130/6210, or by waiving MBA statistics.

STAT7110 - Forecasting Methods Mgmt (Course Syllabus)

This course provides an introduction to the wide range of techniques available for statistical modelling and forecasting of time series. Regression methods for decomposition models, trends and seasonality, spectral analysis, distributed lag models, autoregressive-moving average modeling, forecasting, exponential smoothing, and ARCH and GARCH models will be surveyed. The emphasis will be on applications, rather than technical foundations and derivations. The techniques will be studied critically, with examination of their usefulness and limitations. This course may be taken concurrently with the prerequisite with instructor permission.

Prerequisites: STAT 6130 OR STAT 6210

STAT7220 - Predictive Analytics (Course Syllabus)

This course follows from the introductory regression classes, STAT 1020, STAT 1120, and STAT 4310 for undergraduates and STAT 6130 for MBAs. It extends the ideas from regression modeling, focusing on the core business task of predictive analytics as applied to realistic business related data sets. In particular it introduces automated model selection tools, such as stepwise regression and various current model selection criteria such as AIC and BIC. It delves into classification methodologies such as logistic regression. It also introduces classification and regression trees (CART) and the popular predictive methodologies known as random forest and boosted trees. By the end of the course the student will be familiar with and have applied these concepts and will be ready to use them in a work setting. The methodologies are implemented in a variety of software packages. Applications in JMP emphasize concepts and key modeling decisions. This course is formerly STAT 6220.

Prerequisites: STAT 6130 OR STAT 6210

STAT7230 - Machine Learning in Business (Course Syllabus)

This course introduces students to machine learning techniques used in business applications. The main topics include: cross validation, variable selection procedures, shrinkage methods such as lasso, logistic regression, k-nearest neighbors, ROC curves and confusion matrix, trees, kernel based learning, resampling techniques, random forests, boosting, neural networks & deep learning, matrix methods including singular value decomposition (SVD) and its application in principal component analysis (PCA), and some unsupervised methods such as k-means and density based clustering. Students will learn to apply these methods in a wide range of settings such as marketing and finance, and will gain hands-on experience through class assignments and competitions.

Prerequisites: STAT 6130 OR STAT 6210

STAT7240 - Text Analytics (Course Syllabus)

This course introduces modern text analytics, and the tools of natural language processing. Text and language are powerful repositories of knowledge and information, but the semi-structured nature of language makes deriving insights from text challenging. Modern analytic techniques introduced in this course make it significantly easier even for non-specialists to use text and language data to drive deep insights. The course will use several examples from real world applications in different industries such as ecommerce, healthcare and finance to illustrate these techniques. Students should be familiar with regression models at the level of Stat 6130 or Stat 1020, and the Python language at the level of Stat 4770 or Stat 7770. Familiarity with the Jupyter notebook development environment is presumed, as well as common Python packages such as pandas, NLTK and SpaCy. Those with more knowledge of Statistics, such as from Stat 7220/4220, or computing skills will benefit. The predominant software used in the course is Jupyter notebooks that use a Python interpreter. Familiarity with basic probability models is helpful but not presumed.

STAT7250 - Sports and Gaming Analytics (Course Syllabus)

The “Moneyball revolution” in sports has inspired great interest in the transformative potential of statistics. This “1/2 credit course will introduce students to the growing field of sports analytics while creating for students an opportunity to practice and improve their analytical skills on real problems that are accessible and fun for anyone. This course is meant for students with an interest in sports and a foundational knowledge of statistics. While the context will be sports related and the expectation of students is that they are interested and knowledgeable about most major sports, the skills and techniques gained will be widely applicable and generalizable with applications in diverse areas. The course is very applied and very data driven. Students will conduct hands on work with real data using JMP software, R or Python. Along the way, students will learn new techniques for analyzing data and gain practical and useful skills that will be broadly applicable across many areas.

Prerequisites: STAT 6130 OR STAT 6210

STAT7700 - Data Analy & Stat Comp (Course Syllabus)

This course will introduce a high-level programming language, called R, that is widely used for statistical data analysis. Using R, we will study and practice the following methodologies: data cleaning, feature extraction; web scrubbing, text analysis; data visualization; fitting statistical models; simulation of probability distributions and statistical models; statistical inference methods that use simulations (bootstrap, permutation tests). Prerequisite: Two courses at the statistics 4000 or 5000 level.

STAT7730 - Data Science Using ChatGPT (Course Syllabus)

Large Language Models (LLMs) such as ChatGPTs are enabling data scientists to shift their focus from hands-on coding, data-wrangling, and conducting analyses to designing questions, assessing and managing analyses and translating results into decisions. Students can benefit by equipping themselves with practical data science skills that leverage artificial intelligence tools/large language models such as ChatGPT. This course will cover all aspects of a standard data science pipeline including Data Preparation and Cleaning, Visualization, Model building, Interpretation and Presentation.

STAT7760 - Appl Prob Models Mktg (Course Syllabus)

This course will expose students to the theoretical and empirical "building blocks" that will allow them to construct, estimate, and interpret powerful models of consumer behavior. Over the years, researchers and practitioners have used these models for a wide variety of applications, such as new product sales, forecasting, analyses of media usage, and targeted marketing programs. Other disciplines have seen equally broad utilization of these techniques. The course will be entirely lecture-based with a strong emphasis on real-time problem solving. Most sessions will feature sophisticated numerical investigations using Microsoft Excel. Much of the material is highly technical.

STAT7770 - Intro To Python Data Sci (Course Syllabus)

The goal of this course is to introduce the Python programming language within the context of the closely related areas of statistics and data science. Students will develop a solid grasp of Python programming basics, as they are exposed to the entire data science workflow, starting from interacting with SQL databases to query and retrieve data, through data wrangling, reshaping, summarizing, analyzing and ultimately reporting their results. Competency in Python is a critical skill for students interested in data science. Prerequisites: No prior programming experience is expected, but statistics, through the level of multiple regression is required. This requirement may be fulfilled with MBA courses such as STAT 6130/6210; or by waiving MBA statistics.

STAT7800 - Adv Stat Computing (Course Syllabus)

This course will build on the fundamental concepts introduced in the prerequisite courses to allow students to acquire knowledge and programming skills in large-scale data analysis, data visualization, and stochastic simulation. Prerequisite: STAT 5030, 7050, or 7700 or equivalent background acquired through a combination of online courses that teach the R language and practical experience.

Prerequisites: STAT 5030 OR STAT 7050 OR STAT 7700

STAT8990 - Independent Study (Course Syllabus)

Written permission of instructor, the department MBA advisor and course coordinator required to enroll.

Department of Statistics and Data Science

The Wharton School,
University of Pennsylvania
Academic Research Building
265 South 37th Street, 3rd & 4th Floors
Philadelphia, PA 19104-1686

Phone: (215) 898-8222