Giles Hooker

Giles Hooker
  • Professor of Statistics and Data Science

Contact Information

  • office Address:

    409 Academic Research Building
    265 South 37th Street
    Philadelphia, PA 19104

Research Interests: Machine Learning, Functional Data Analysis, Differential Equations, Computational Statistics, Statistical Ecology

Links: Personal Website

Teaching

Current Courses (Spring 2024)

  • STAT4700 - Data Analy & Stat Comp

    This course will introduce a high-level programming language, called R, that is widely used for statistical data analysis. Using R, we will study and practice the following methodologies: data cleaning, feature extraction; web scrubbing, text analysis; data visualization; fitting statistical models; simulation of probability distributions and statistical models; statistical inference methods that use simulations (bootstrap, permutation tests). Prerequisite: Waiving the Statistics Core completely if prerequisites are not met. This course may be taken concurrently with the prerequisite with instructor permission.

    STAT4700401 ( Syllabus )

    STAT4700402 ( Syllabus )

  • STAT5030 - Data Analy & Stat Comp

    This course will introduce a high-level programming language, called R, that is widely used for statistical data analysis. Using R, we will study and practice the following methodologies: data cleaning, feature extraction; web scrubbing, text analysis; data visualization; fitting statistical models; simulation of probability distributions and statistical models; statistical inference methods that use simulations (bootstrap, permutation tests). Prerequisite: Two courses at the statistics 4000 or 5000 level.

    STAT5030401 ( Syllabus )

    STAT5030402 ( Syllabus )

All Courses

  • STAT4700 - Data Analy & Stat Comp

    This course will introduce a high-level programming language, called R, that is widely used for statistical data analysis. Using R, we will study and practice the following methodologies: data cleaning, feature extraction; web scrubbing, text analysis; data visualization; fitting statistical models; simulation of probability distributions and statistical models; statistical inference methods that use simulations (bootstrap, permutation tests). Prerequisite: Waiving the Statistics Core completely if prerequisites are not met. This course may be taken concurrently with the prerequisite with instructor permission.

  • STAT5030 - Data Analy & Stat Comp

    This course will introduce a high-level programming language, called R, that is widely used for statistical data analysis. Using R, we will study and practice the following methodologies: data cleaning, feature extraction; web scrubbing, text analysis; data visualization; fitting statistical models; simulation of probability distributions and statistical models; statistical inference methods that use simulations (bootstrap, permutation tests). Prerequisite: Two courses at the statistics 4000 or 5000 level.

Knowledge at Wharton

How Early Adopters of Gen AI Are Gaining Efficiencies

Enterprises are seeing gains from generative AI in productivity and strategic planning, according to speakers at a recent Wharton conference. Read More

Knowledge @ Wharton - 2/20/2024
What Can We Do to Narrow the Wealth Gap?

Empowering communities with education, opportunities, and a vision for wealth-building can pave the way to closing the wealth gap.Read More

Knowledge @ Wharton - 2/20/2024
The Overlooked Causes of Air Pollution

Short bursts of air pollution, often caused by indoor cooking, are being neglected by existing regulations, according to research by Wharton’s Susanna Berkouwer. Read More

Knowledge @ Wharton - 2/19/2024