Miyabi Ishihara

Miyabi Ishihara
  • Lecturer in Statistics and Data Science

Contact Information

  • office Address:

    Academic Research Building
    265 South 37th Street
    Philadelphia, PA 19104

Teaching

Current Courses (Spring 2025)

  • STAT1120 - Introductory Statistics

    Further development of the material in STAT 1110, in particular the analysis of variance, multiple regression, non-parametric procedures and the analysis of categorical data. Data analysis via statistical packages. This course may be taken concurrently with the prerequisite with instructor permission.

    STAT1120001 ( Syllabus )

  • STAT4050 - Stat Computing With R

    The goal of this course is to introduce students to the R programming language and related eco-system. This course will provide a skill-set that is in demand in both the research and business environments. In addition, R is a platform that is used and required in other advanced classes taught at Wharton, so that this class will prepare students for these higher level classes and electives.

    STAT4050401 ( Syllabus )

    STAT4050402 ( Syllabus )

  • STAT7010 - Modern Data Mining

    Modern Data Mining: Statistics or Data Science has been evolving rapidly to keep up with the modern world. While classical multiple regression and logistic regression technique continue to be the major tools we go beyond to include methods built on top of linear models such as LASSO and Ridge regression. Contemporary methods such as KNN (K nearest neighbor), Random Forest, Support Vector Machines, Principal Component Analyses (PCA), the bootstrap and others are also covered. Text mining especially through PCA is another topic of the course. While learning all the techniques, we keep in mind that our goal is to tackle real problems. Not only do we go through a large collection of interesting, challenging real-life data sets but we also learn how to use the free, powerful software "R" in connection with each of the methods exposed in the class. Prerequisite: two courses at the statistics 4000 or 5000 level or permission from instructor.

    STAT7010001 ( Syllabus )

  • STAT7050 - Stat Computing With R

    The goal of this course is to introduce students to the R programming language and related eco-system. This course will provide a skill-set that is in demand in both the research and business environments. In addition, R is a platform that is used and required in other advanced classes taught at Wharton, so that this class will prepare students for these higher level classes and electives.

    STAT7050401 ( Syllabus )

    STAT7050402 ( Syllabus )

All Courses

  • STAT1010 - Intro Business Stat

    Data summaries and descriptive statistics; introduction to a statistical computer package; Probability: distributions, expectation, variance, covariance, portfolios, central limit theorem; statistical inference of univariate data; Statistical inference for bivariate data: inference for intrinsically linear simple regression models. This course will have a business focus, but is not inappropriate for students in the college. This course may be taken concurrently with the prerequisite with instructor permission.

  • STAT1120 - Introductory Statistics

    Further development of the material in STAT 1110, in particular the analysis of variance, multiple regression, non-parametric procedures and the analysis of categorical data. Data analysis via statistical packages. This course may be taken concurrently with the prerequisite with instructor permission.

  • STAT4050 - Stat Computing with R

    The goal of this course is to introduce students to the R programming language and related eco-system. This course will provide a skill-set that is in demand in both the research and business environments. In addition, R is a platform that is used and required in other advanced classes taught at Wharton, so that this class will prepare students for these higher level classes and electives.

  • STAT4310 - Statistical Inference

    Graphical displays; one- and two-sample confidence intervals; one- and two-sample hypothesis tests; one- and two-way ANOVA; simple and multiple linear least-squares regression; nonlinear regression; variable selection; logistic regression; categorical data analysis; goodness-of-fit tests. A methodology course. This course does not have business applications but has significant overlap with STAT 1010 and 1020. This course may be taken concurrently with the prerequisite with instructor permission.

  • STAT7010 - Modern Data Mining

    Modern Data Mining: Statistics or Data Science has been evolving rapidly to keep up with the modern world. While classical multiple regression and logistic regression technique continue to be the major tools we go beyond to include methods built on top of linear models such as LASSO and Ridge regression. Contemporary methods such as KNN (K nearest neighbor), Random Forest, Support Vector Machines, Principal Component Analyses (PCA), the bootstrap and others are also covered. Text mining especially through PCA is another topic of the course. While learning all the techniques, we keep in mind that our goal is to tackle real problems. Not only do we go through a large collection of interesting, challenging real-life data sets but we also learn how to use the free, powerful software "R" in connection with each of the methods exposed in the class. Prerequisite: two courses at the statistics 4000 or 5000 level or permission from instructor.

  • STAT7050 - Stat Computing with R

    The goal of this course is to introduce students to the R programming language and related eco-system. This course will provide a skill-set that is in demand in both the research and business environments. In addition, R is a platform that is used and required in other advanced classes taught at Wharton, so that this class will prepare students for these higher level classes and electives.

Knowledge at Wharton

Real AI Adoption Means Changing Human Behavior

Wharton’s Scott Snyder and co-author Jason Hreha offer five strategies to bridge the gap between leadership expectations around AI and meaningful transformation.Read More

Knowledge @ Wharton - 1/21/2025
Why the Most Successful Companies Are Scalable

Giants such as Amazon stay on top because they’re both more productive and more scalable than their competitors, according to research from Wharton and Penn.Read More

Knowledge @ Wharton - 1/21/2025
Cryptocurrency and Blockchains | Kevin Werbach

Professor Kevin Werbach demystifies blockchain technology.Read More

Knowledge @ Wharton - 1/21/2025