Siyu Heng

Siyu Heng
  • AMCS PhD Student

Contact Information

  • office Address:

    433 Jon M. Huntsman Hall,
    3730 Walnut Street,
    Philadelphia, PA 19104

Teaching

Current Courses

  • MATH104 - Calculus I

    Brief review of High School calculus, applications of integrals, transcendental functions, methods of integration, infinite series, Taylor's theorem, and first order ordinary differential equations. Use of symbolic manipulation and graphics software in calculus.

    MATH104910

Past Courses

  • MATH104 - CALCULUS I

    Brief review of High School calculus, applications of integrals, transcendental functions, methods of integration, infinite series, Taylor's theorem, and first order ordinary differential equations. Use of symbolic manipulation and graphics software in calculus.

  • MATH509 - ADVANCED ANALYSIS

    Continuation of Math 508. The Arzela-Ascoli theorem. Introduction to the topology of metric spaces with an emphasis on higher dimensional Euclidean spaces. The contraction mapping principle. Inverse and implicit function theorems. Rigorous treatment of higher dimensional differential calculus. Introduction to Fourier analysis and asymptotic methods.

  • MATH546 - ADVANCED PROBABILITY

    The required background is (1) enough math background to understand proof techniques in real analysis (closed sets, uniform covergence, fourier series, etc.) and (2) some exposure to probability theory at an intuitive level (a course at the level of Ross's probability text or some exposure to probability in a statistics class). After a summary of the necessary results from measure theory, we will learn the probabist's lexicon (random variables, independence, etc.). We will then develop the necessary techniques (Borel Cantelli lemmas, estimates on sums of independent random variables and truncation techniques) to prove the classical laws of large numbers. Next come Fourier techniques and the Central Limit Theorem, followed by combinatorial techniques and the study of random walks.

  • STAT930 - PROBABILITY

    Measure theory and foundations of Probability theory. Zero-one Laws. Probability inequalities. Weak and strong laws of large numbers. Central limit theorems and the use of characteristic functions. Rates of convergence. Introduction to Martingales and random walk.

Knowledge@Wharton

Is Data Privacy Real? Don’t Bet on It

Companies often claim individuals’ data can be kept private if personally identifiable information remains hidden. But being anonymous is not easy, say experts from Penn’s Warren Center for Network and Data Sciences.

Knowledge @ Wharton - 2019/08/23
How Can Hospitals Best Manage the Uneven Flow of Patients?

Wharton's Hummy Song examines the common hospital practice of capacity pooling and whether it’s the best way to manage the mismatch between the number of patients and available beds.

Knowledge @ Wharton - 2019/08/23
Beating the Giants: Zhongliang’s Strategy for Growth

Stories of success in China’s real estate market invariably come from the country’s largest firms. But not always. The stunning rise of China’s Zhongliang Group Limited is one such exception. Its triumph is a reminder that strategy, not scale, anchors a firm’s competitiveness. Zhongliang, founded in China’s entrepreneurial heartland of Wenzhou, experienced rapid national expansion

Knowledge @ Wharton - 2019/08/20