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We propose a fast and accurate algorithm, VIF regression, for doing feature selection in large regression problems. VIF regression is
extremely fast; it uses a one-pass search over the predictors and a computationally efficient method of testing each potential predictor for
addition to the model. VIF regression provably avoids model overfitting, controlling the marginal false discovery rate. Numerical results
show that it is much faster than any other published algorithm for regression with feature selection and is as accurate as the best of the
slower algorithms.
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1. INTRODUCTION

Datasets from such areas as genetic sequences, text mining
the Web, image processing, and sensor networks can now eas-
ily contain millions of observations and hundreds of thousands
of features. Even a medium-sized dataset can create a huge
number of potential variables if interactions are considered. The
problem of variable selection or feature selection, which aims
to select the most predictive of an enormous number of candi-
date features, plays an increasingly important role in modern
research (Guyon and Elisseeff 2003).

The specific problem that we consider here is how to improve
the speed of variable selection algorithms for linear regression
models of very large-scale data. Linear regression models are
widely used for building models for large problems; their sim-
plicity makes them fast and easy to evaluate.

The statistical embodiment of variable selection that we con-
sider here is a classical normal linear model,

y = Xβ + ε, (1)

with n observations y = (y1, . . . , yn)
′ and p predictors x1, . . . ,

xp, p � n, where X = (x1, . . . ,xp) is an n × p design matrix of
features, β = (β1, . . . , βp)

′ is the vector of coefficient parame-
ters, and error ε ∼ N(0, σ 2In).

The number of the features in the dataset is often much larger
than the number of the observations. In these cases, we need
to either regularize the coefficient parameters β in (1) or se-
lect a subset of variables that can provide a jointly predictive
model, assuming that only a subset of k of the p predictors
{xj}p

j=1 in (1) has nonzero coefficients (Miller 2002). In this ar-
ticle we present a fast algorithm for searching for such a low-
dimensional model.

Our variance inflation factor (VIF) regression algorithm has
a computation complexity, O(pn), under the sparsity assump-
tion that k � p. This speed enables the VIF algorithm to han-
dle larger datasets than many competitors, as illustrated in Fig-
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ure 1. The VIF regression algorithm also guarantees good con-
trol of the marginal false discovery rate (mFDR) (Foster and
Stine 2008) with no overfitting, and thus provides accurate pre-
dictions. Figure 2 shows the out-of-sample performance of VIF
and four competing algorithms. VIF regression is more accu-
rate than its fastest competitor, GPS (Friedman 2008), and is of
comparable accuracy to its slow but accurate competitors, such
as stepwise regression.

1.1 Related Work

Variable selection algorithms are generally designed to seek
an estimate of β that minimizes the lq penalized sum of squared
errors

arg min
β

{‖y − Xβ‖2
2 + λq‖β‖lq

}
, (2)

where ‖β‖lq = (
∑p

i=1 |β i|q)1/q for q > 0 and ‖β‖l0 =∑p
i=1 I{βi �=0}.
The aforementioned problem of selecting a subset of vari-

ables corresponds to using an l0 norm in (2). This problem is
NP hard (Natarajan 1995), yet its solution can be greedily ap-
proximated by stepwise regression, a standard statistical tool.
Stepwise regression works well for moderate-sized datasets, but
has relatively high computational complexity, O(np2q2). It can
become very slow when n is large, because o(n/ log n) variables
can enter the model without overfitting (Breiman and Freedman
1983; Greenshtein and Ritov 2004). Zhang (2009) developed a
new optimization algorithm, FoBa, which also addresses the l0
problem and provides a theoretical bound on its accuracy. But
FoBa is extremely slow, as shown in our experiments; also, un-
like VIF regression, it requires cross-validation to determine the
sparsity of the model.

A rich literature has been developed in recent years solv-
ing (2) using an l1 norm penalty. Exact solutions can be found
efficiently because of the convexity of the l1 problem, for ex-
ample, Lasso/LARS (Efron et al. 2004) and the Dantzig Se-
lector (Candes and Tao 2007). These l1 methods have several
limitations, however. First, cross-validation is needed to deter-
mine the penalty λ1; this is time-consuming and is not realiz-
able in the setting where predictors are generated dynamically.
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Figure 1. Number of candidate variables examined (“capacity”) of
five algorithms: VIF regression, stepwise regression, Lasso, FoBa, and
GPS, within fixed time (in seconds). The algorithms were asked to
search for a model given n = 1000 observations and p candidate pre-
dictors. VIF regression can run many more variables than any other
algorithm; by the 300th second, VIF regression has run 100,000 vari-
ables, whereas stepwise regression, Lasso, and FoBa have run 900,
700, and 600, respectively. The implementation of GPS stopped when
p is larger than 6000; nevertheless, it is clear that VIF regression can
run on much larger data than GPS can. Details of the algorithms and
models are given in Section 6. The online version of this figure is in
color.

Second, implementations of these algorithms historically have
been slow. Our experiments (Section 6) show that Lasso is slow
compared with other algorithms; implementation of the Dantzig

Figure 2. Out-of-sample mean squared errors of the models cho-
sen by the five algorithms. The algorithms were asked to search for a
model given n = 1000 observations and p = 500 independently sim-
ulated candidate predictors; mean squared errors of the five chosen
models on a test set were computed. We repeated this test 50 times.
The figure shows boxplots of these results. VIF regression is as accu-
rate as stepwise regression and FoBa, and much more accurate than
GPS and Lasso. The online version of this figure is in color.

selector is even slower than the quadratic algorithms (Hastie,
Tibshirani, and Friedman 2009), although it can be solved by
linear programming. Faster algorithms in this category include
coordinate descent (Friedman, Hastie, and Tibshirani 2010) and
GPS (Friedman 2008). In Section 6 we show that our algorithm
is faster than the fastest of these algorithms, GPS.

More importantly, l1 algorithms lead to biased estimates
(Candes and Tao 2007) and tend to include more spurious vari-
ables than l0 methods, and thus do not perform as well as greedy
algorithms in highly sparse systems (Zhang 2009). This bias is
due to the fact that these methods minimize a relaxed problem
and thus achieve suboptimal solutions to the original problem
(Lin et al. 2008). As a result, these optimization algorithms have
less accurate predictions; as shown in Figure 10 in Section 6.4,
models built by Lasso and GPS are not as accurate as the model
fitted using our VIF regression algorithm.

Although efficiently solving nonconvex problems remains
highly challenging, progress toward this goal has been reported
(Friedman 2008). In the extreme nonconvex case where an l0
penalty is applied, stepwise regression is still the most accurate
approximation algorithm. The VIF regression algorithm that we
present in this article is in fact an improved, much faster version
of stepwise regression.

1.2 Our VIF Regression Approach

Our VIF algorithm is characterized by the following two
components:

• The evaluation step, where we approximate the partial cor-
relation of each candidate variable xi with the response
variable y by correcting (using the “variance inflation fac-
tor”) the marginal correlation using a small presampled set
of data. This step can be as fast as O(n) for each variable.

• The search step, in which we test each variable sequen-
tially using an α-investing rule (Foster and Stine 2008).
The α-investing rule guarantees no model overfitting and
provides highly accurate models.

The evaluation step inherits the spirit of a variation of step-
wise regression, forward stagewise regression, which evaluates
variables only using marginal correlations. The small step-size
forward stagewise regression algorithm behaves similarly to l1
algorithms, such as Lasso and LARS (Efron et al. 2004); thus,
like its siblings, it suffers from collinearities among the predic-
tors and will also introduce bias in the estimates. Herein we
correct this bias by presampling a small set of data to compute
the variance inflation factor (VIF) of each variable. The result-
ing evaluation procedure is fast and does not lose significant
accuracy.

This novel VIF procedure can be incorporated with a variety
of algorithms, including stepwise regression, LARS, and FoBa.
As a demonstration, we incorporate this evaluating procedure
with a streamwise regression algorithm using an α-investing
rule to take full advantage of its speed. Streamwise regression
(Zhou et al. 2006), another variation of stepwise regression,
considers the case where predictive features are tested sequen-
tially for addition to the model. Because it considers each po-
tential feature only once, it is extremely fast. The resulting VIF
regression algorithm is especially useful when feature systems
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are dynamically generated and the size of the collection of can-
didate features is unknown or even infinite. It also can serve as
an “online” algorithm to load extremely large-scale data into
RAM feature by feature. (Note that our method is available on-
line in features, unlike most online regression methods, which
are online in observations.)

Our approach is statistics-based in the sense that we add vari-
ables only when they are able to pay the price of reducing
a statistically sufficient variance in the predictive model. The
“price,” or the penalty λ0 in (1), has been well studied in sta-
tistics. Classical criteria for the choices include Mallows’s Cp,
the Akaike information criterion (AIC), the Bayesian informa-
tion criterion (BIC), the risk inflation criterion (RIC), and many
other criteria (Miller 2002). Thus, unlike optimization-based
approaches, our algorithm does not require cross-validation.

We compare our VIF algorithm with classic stepwise regres-
sion, the Lasso algorithm, and two recently developed algo-
rithms, GPS (Friedman 2008) and FoBa (Zhang 2009). Our ex-
periments produced two main results: (1) The VIF regression
algorithm is much faster than any other published algorithms,
and (2) the VIF algorithm is comparably accurate to (the slow)
stepwise regression and FoBa, but more accurate than (the fast)
GPS and Lasso.

The rest of the article is organized as follows. In Section 2
we compare single steps in forward stepwise regression and
forward stagewise regression, and show that the coefficient es-
timate provided by the latter is biased by a factor caused by
the multicollinearity and thus needs to be corrected. We pro-
pose and present the sped-up streamwise algorithm in Section 3
and note that our algorithm avoids overfitting; it controls the
mFDR. In Section 4 we discuss the choice of subsample size,
which determines the speed of the algorithm. Section 5 provides
guarantees against underfitting, proving that the necessary high
signal predictors will not be missed. Finally, in Sections 6 and 7
we experimentally compare VIF against competing methods on
several datasets.

2. FORWARD SELECTION AND BIAS CORRECTION

2.1 Forward Feature Selection

Optimally solving (2) with an l0 penalty requires searching
over all 2p possible subsets, which is NP hard (Natarajan 1995)
and thus computationally expensive even when p is small. Com-
putationally tractable selection procedures have been designed
to overcome this problem in light of model sparsity and the fact
that a majority of the subset models can be ignored. Stepwise
regression is such an algorithm.

Stepwise regression sequentially searches for predictors that
collectively have strong predictivity. In each step, a multivari-
ate model is statistically analyzed, and a new variable may
be added to or an existing variable may be removed from the
current model. Common procedures include forward selection,
backward elimination, and a forward–backward combination.
Forward selection starts from a constant term 1n and adds one
predictor at a time; backward elimination starts from the full
set of predictors and removes one predictor in each step. Both
procedures have advantages and disadvantages. For data mining
applications, however, backward algorithms are unrealistic be-
cause of the computational complexity of building models with

enormous number of potential explanatory variables. In con-
trast, forward procedures are much faster, and thus more desir-
able.

Because multiple regression is needed for each candidate
predictor in forward stepwise regression, O(npq2) computation
is required for each step, where q is the number of variables in-
cluded in the current model. We assume p � n. Given the vast
set of potential predictors involved, substantial CPU time is of-
ten required; thus constructing a more efficient algorithm that
can reduce the computational complexity is attractive.

In contrast, in forward stagewise regression, only marginal
estimates, not partial estimates, are computed in each evalu-
ation step. Thus only O(np) computation is needed, and this
procedure is much faster than forward stepwise regression.

We next show that forward stagewise regression leads to a
bias that must be corrected to achieve optimal performance. The
correction of this bias with be the core of our VIF method.

2.2 Bias Correction

To show that the stagewise evaluation procedure is biased,
consider a scheme in which k predictors have already been
added to the model, and we are searching for the k + 1st predic-
tor. Without loss of generality, assume that all of the predictors
are centered and normalized. Because our goal is to find a col-
lectively predictive linear model, we want to test the following
alternative hypothetical model:

y = β0 + β1x1 + · · ·
+ βkxk + βnewxnew + ε, ε ∼ N(0, σ 2I), (3)

where 1n,x1, . . . ,xk are linearly independent variables. We
abuse the notation and remain using σ 2 to denote the vari-
ance of the errors. Note that this σ 2 might be different from
the more general one presented in Section 1. Denote X =
[1n x1 · · · xk], X̃ = [X xnew], β = (β0, . . . , βk)

′, and β̃ =
(β0, . . . , βk, βnew)′.

Let β̂new be the least squares estimate of βnew in model (3).
Let r be the residual of projecting y on {1n} ∪ {xi}k

i=1. The hy-
pothetical model being considered in stagewise regression is

r = γnewxnew + ε̃, ε̃ ∼ N(0, σ̃ 2I). (4)

We let γ̂new be the least squares estimate of γnew in this
model (4) and have the following proposition.

Proposition 1. Under model (3),

γ̂new = ρ2β̂new, (5)

where

ρ2 = x′
new(I − X(X′X)−1X′)xnew

= 〈xnew,P⊥
Xxnew〉 = 〈P⊥

Xxnew,P⊥
Xxnew〉 (6)

and P⊥
X is the projection onto the orthogonal complement of the

hyperplane spanned by {1n,x1, . . . ,xk}, in the space spanned
by {1n,x1, . . . ,xk,xnew}.

Proof. First, note that

X̃′X̃ =
(

X′X X′xnew

x′
newX x′

newxnew

)
,

(7)

(X̃′X̃)−1 =
( ∗ ∗∗

−ρ−2x′
newX(X′X)−1 ρ−2

)
,
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Figure 3. Schematic illustration of Proposition 1. Suppose that y = βx + βnewxnew + ε. Let Px denote the projector on x; then r = y − Pxy
and P⊥

x xnew = xnew − Pxxnew. In stepwise regression, the model fit is the projection of r on P⊥
x xnew whereas in stagewise regression, the model

fit is the projection of r on xnew. Note that the red dotted line is perpendicular to xnew, and the red dashed line is perpendicular to P⊥
x xnew,

γ̂new/β̂new = 〈xnew,P⊥
x xnew〉2/‖xnew‖2‖P⊥

x xnew‖2 = 〈xnew,P⊥
x xnew〉 = ρ2.

where

∗ = (X′X)−1 + ρ−2(X′X)−1X′xnewx′
newX(X′X)−1

and ∗∗ = −ρ−2(X′X)−1X′xnew. Thus,

β̂new = (X̃′X̃)−1
newX̃′y

= −ρ−2x′
newX(X′X)−1X′y + ρ−2x′

newy

= ρ−2x′
newr = ρ−2γ̂new.

A simple case with two variables, shown in Figure 3, illus-
trates the underlying geometric mechanism of Proposition 1.

Proposition 1 suggests that the stagewise coefficient esti-
mate γ̂new is simply a scaled stepwise coefficient estimate β̂new.
Thus, if the predictors are all centered, both of the hypothesis
tests, H0 :βnew = 0 and H0 :γnew = 0, can detect whether or not
xnew contributes to the model. The amount of the contribution
that is detected by these two tests is fundamentally different,
however.

Under model (3), the expected estimated variance of β̂new is

E[ ̂Var(β̂new)] = E[(X̃′X̃)−1
newσ̂ 2

step] = ρ−2σ 2

by (7), where σ̂ 2
step = (‖r‖2 − ρ−2(x′

newr)2)/(n − k − 2) is the
mean squared error of this model.

On the other hand, under model assumption (4),

E[ ̂Var(γ̂new)] = E[σ̂ 2
stage] = σ̃ 2,

where σ̂ 2
stage = (‖r‖2 − (x′

newr)2)/(n − 1) is the mean squared
error of model (4).

Therefore, we have approximately

̂Var(γ̂new) ≈ ρ2 ̂Var(β̂new). (8)

It follows that the corresponding t-ratios satisfy

t(stagewise)
new ≈ |ρ| · t(stepwise)

new . (9)

The simulation results shown in Figure 4 demonstrate that
these two t-ratios differ by a factor of approximately ρ.

This bias is caused by the misspecified model assumption:
under model (3), model (4) is not valid. If ρ2 = 1, xnew is or-
thogonal to X, and these two procedures are identical; however,
if ρ2 < 1, or xnew is correlated with X, the errors in model (4)
should be correlated. In the latter case, the common model hy-
pothesis testing, which assumes error independence, will not
lead to a correct conclusion.

To some extent, forward stepwise regression provides a more
powerful procedure in the sense that predictors that can be de-
tected by stagewise regression will be spotted by stepwise re-
gression as well, but not necessarily vice versa. In contrast, the
forward stagewise procedures may prefer a spurious predictor

Figure 4. The biased t-ratio. We simulated y = x + xnew + N(0,1)

with sample size n = 30, Corr(x,xnew) =
√

1 − ρ2. For each ρ vary-
ing from 0 to 1, we computed both t-statistics of the estimated coef-
ficient of xnew, tstage, and tstep, from the two procedures. The ratio
tstage/tstep on ρ is shown. It matches ρ well, as suggested by (9). The
online version of this figure is in color.

http://pubs.amstat.org/action/showImage?doi=10.1198/jasa.2011.tm10113&iName=master.img-000.jpg&w=318&h=195
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Figure 5. Out-of-sample errors of three algorithms. A naïve algo-
rithm without correction may not be as accurate. The online version of
this figure is in color.

that is less correlated with X to a predictable variable that is
highly correlated with X. One of the criticisms of forward se-
lections is that they can never correct the mistakes in earlier
steps (Zhang 2009); the inclusion of this spurious variable in
the model might lead to more bias. If the data have strong multi-
collinearity, then the stagewise algorithm will result in a model
that is not as predictive.

To illustrate this fact, we simulated p = 200 features that are
jointly Gaussian and with a covariance matrix of the form (17),
with θ = 0.9 and τ 2 = 0.1. The way in which we simulated the
response variable y is similar to the simulations presented in
Section 6.3. We compared two algorithms: the VIF regression
algorithm that we propose in Section 3 and a Naïve algorithm
that is exactly the same as the VIF regression algorithm except
that it does not include the t-statistic correction procedure.

Over 50 replications, we found that on average, VIF regres-
sion chose 91% of the true variables, whereas the naïve algo-
rithm chose 47.3% of the true ones. Figure 5 showed the out-
of-sample error rate of these two algorithms and Lasso on the
same sets of data. It is obvious that the naïve algorithm without
a correction procedure does not perform as well as an algorithm
based on the corrected statistics.

2.3 The Fast Evaluation Procedure

To speed up the evaluation procedure, we take advantage of
the economical computation of forward stagewise regression,
but correct the biased t-ratio in each step, thus giving results
similar in accuracy to the stepwise regression procedures. To-
ward this end, we need to estimate the true sample distribution
of γ̂new under model (3):

Proposition 2. Under model assumption (3),

γ̂new ∼ N(ρ2βnew, ρ2σ 2). (10)

Proof. Because, by (7), β̂new ∼ N(βnew, ρ−2σ 2), it follows
by Proposition 1.

Now that γ̂new/(|ρ|σ) ∼ N(0,1), with proper estimates of ρ

and σ , we can have an honest t-ratio for testing whether or not
βnew = 0:

• σ̂ can be estimated by the root mean squared error
(RMSE), σ̂null, under the null model H0 :βnew = 0. Un-
like σ̂step or σ̂stage (Section 2.2), which are the common
estimated standard deviations in regression analysis, using
this null estimate σ̂null can prevent overfitting or introduc-
ing selection bias, especially in data with heteroscedastic-
ity (Foster and Stine 2004).

• ρ̂: ρ can be calculated precisely by proceeding with a mul-
tiple regression of xnew on C = {1n,x1, . . . ,xk}, then com-
puting ρ2 = 1 − R2

new|1···k, the unexplained proportion of
variation. But this computation is as expensive as the step-
wise procedure, and thus is not desirable. Unfortunately,
there is no easy way to estimate ρ because of the de-
pendence issue that we discussed earlier. Most tools, in-
cluding the bootstrap, break down because of dependency
among the errors, which are the only numerical products
after stagewise regression is performed. Our solution to
this problem is to randomly sample a size m subset of the
whole dataset and use this subset to estimate ρ2 in light
of the fact that each random subset should represent the
whole data. We discuss the choice of m in Section 4.

Our fast evaluation procedure is summarized as follows:

The Fast Evaluation Procedure. At each step of the regres-
sion, suppose that a set of predictors, C = {x1, . . . ,xk}, has been
chosen in the model. We assume that all of the variables xi are
centered.

1. Obtain residuals r = y − XC (X′
C XC )−1X′

C y and RMSE
σ̂null = ‖r‖/√(n − |C| − 1) from the previous step.

2. Sample a small subset I = {i1, . . . , im} ⊂ {1, . . . ,n} of ob-
servations; let xI denote the corresponding subsample of
predictors x.

3. Fit r on xnew/‖xnew‖ and compute the coefficient estimate
γ̂new = 〈r,xnew〉/‖xnew‖.

4. Fit xI
new on {xI

1 , . . . ,xI
k } and compute R2

I = x′
newXI

C ×
((XI

C )′XI
C )−1(XI

C )′xnew/‖xnew‖2.
5. Compute and return the approximate t-ratio as t̂new =

γ̂new/(σ̂

√
1 − R2

I ).

3. VIF REGRESSION

The fast evaluation procedure can be adapted to speed up
a variety of stepwise-like algorithms, but it is most beneficial
in massive data settings. Therefore, we incorporate it into a
streamwise variable selection algorithm using an α-investing
rule.

3.1 α-Investing, Sequential Testing, and mFDR

An α-investing rule is an adaptive, sequential procedure for
testing multiple hypotheses (Foster and Stine 2008). The rule
works as follows. Suppose that this is a game with a series of
tests. A gambler begins his game with initial wealth, w0; in-
tuitively, this is an allowance for type I error. In the ith test
(game), at level αi, if a rejection is made, then the gambler earns
a pay-out 
w; otherwise, his current wealth wi will be reduced
by αi/(1 − αi). The test level αi is set to be wi/(1 + i − f ),
where f is the time at which the last hypothesis was rejected.
Thus, once the gambler successfully rejects a null hypothesis,
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he earns more to spend the next few times. Furthermore, the
game becomes easier to play in the near future, in the sense that
αi will remain inflated in the short term. The game continues
until the player goes bankrupt, that is, wi ≤ 0.

The α-investing rule naturally implements a Bonferroni rule,
but overcomes its conservativity, controlling instead the mFDR.

The false discovery rate (FDR) aims to control the family-
wise error rate (FWER) arising in multiple statistical inferences
(Benjamini and Hochberg 1995). In multiple hypothesis testing,
the successful rejection of a null hypothesis is called a discov-
ery. The classic definition of FDR is the expected proportion
of false discoveries among all discoveries throughout the whole
process,

FDR = E

(
V

R

∣∣∣R > 0

)
P(R > 0), (11)

where V is the number of false positives and R is the number
of total discoveries. A few variants of FDR have been intro-
duced in the past decade, including the mFDR, which is defined
as E(V)/E(R) or E(V)/(E(R) + 1); the positive false discov-
ery rate (pFDR) (Storey 2002), which drops the term P(R > 0)

in (11); and the local false discovery rate (fdr) (Efron et al.
2001), which is determined by the size of the test statistic z.

An α-investing procedure controls mFDR in a sequential set-
ting (Foster and Stine 2008).

Proposition 3. An α-investing rule with initial alpha-wealth
w0 ≤ αη and pay-out 
w ≤ α controls mFDRη = E(V)/

(E(R) + η) at level α.

See Foster and Stine (2008) for the technical details of this the-
orem.

3.2 Steamwise Variable Selection and VIF Regression

Using an α-investing rule allows us to test an infinite stream
of hypotheses while controlling mFDR. In the context of vari-
able selection, this implies that we may order the variables in
a sequence (possibly dynamically) and include them into the
model in a streamwise manner without overfitting.

Overfitting is a common problem in regression analysis. The
model R2 will increase when a new variable is added, regard-
less of whether or not it is spurious. This in-sample overfit-
ting may result in terrible predictions when the model is used
out of sample. Thus the goal of all variable selection problems
is to find a parsimonious model that has a satisfactory R2 or
model fit, to avoid overfitting. These problems will typically
impose a penalty on the number of variables in the model,
namely the l0 norm of the coefficient parameters, as we in-
troduced in Section 1. Forward selection approaches the so-
lutions to these problems by properly thresholding the t-ratios
of upcoming variables to control the number of selected vari-
ables.

The ability to test the variables in a streamwise way has
many advantages. First, the one-pass algorithm can save a
great amount of computation if the data are massive. In most
search algorithms, adding each new variable necessitates going
through the whole space of candidate variables; the computa-
tion is expensive if the data size, n × p, is huge. We alleviate
this burden by reducing the loops to only one round. Second,
this allows one to handle dynamic variable sets. These include

Algorithm 1 VIF regression. The boosted Streamwise Regres-
sion using α-investing

Input: data y, x1, x2, . . . (centered);
Set: initial wealth w0 = 0.50 and pay-out 
w = 0.05, and
subsample size m;
Initialize C = {0}; r = y − ȳ; σ̂ = sd(y); i = 1; w1 = w0;
f = 0.
Sample I = {i1, . . . , im} ⊂ {1, . . . ,n}.
repeat

set threshold αi = wi/(1 + i − f )
attain t̂i from the Fast Evaluation Procedure // compute
corrected t-statistic
if 2�(|ti|) > 1 − αi // compare p-value to threshold then

C = C ∪ {i} // add feature to model
update r = y − ŷC , σ̂ = RMSEC
wi+1 = wi + 
w
f = i

else
wi+1 = wi − αi/(1 − αi)

end if
i = i + 1

until maximum CPU time or Memory is reached

*� is the CDF of the normal distribution.

the cases where p is extremely large or unknown, resulting in a
problem in applying static variable selection criteria. This also
allows one to first test the lower-order interactions and then de-
cide which higher-order interactions need to be tested.

Given the α-investing rule for sequential variable selection,
we may proceed with our algorithm in a streamwise way with a
guarantee of no overfitting. We state our VIF regression proce-
dures in Algorithm 1. We call it “VIF” because the correction
factor ρ in the key speed-up part is the variance inflation factor
of the new variable with respect to the included variables.

One might worry that going through the candidate predic-
tors only once may miss signals. In the worst case, it may
in fact miss useful predictors; however, this will not occur in
cases where the variables are orthogonal, as in, for example, or-
thogonally designed experiments and signal processing (using
a Fourier transform or wavelet transform). This also applies to
distributionally orthogonal variables, as in, for example, inde-
pendent Gaussian entries in image processing. If predictors are
highly correlated, then each of these variables may contribute
to the model, because we are looking for a collectively linear
model. As we prove later, using an α-investing rule in this case
guarantees that the final model will have certain predictability.
Our experiments (Section 6) show that the test accuracy of the
models chosen by the VIF algorithm is highly competitive with
that of models chosen by the most accurate algorithms for lin-
ear models. Furthermore, if we have previous knowledge of the
predictors (e.g., for PCA variables), then we can assign a higher
priority to important variables so that they can be entered into
the model more easily.

4. ACCURACY AND COMPUTATIONAL COMPLEXITY

Obviously, a large m (i.e., many observations used to test for
inclusion of a feature) can guarantee an accurate approximation
in our algorithm (Algorithm 1), but a small m will provide faster
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computation. How large should m be to attain a reasonably ac-
curate result? Ideally, we want to pick m � n and small α and ε,
such that

P

(∣∣∣∣ |ρ̂| − |ρ|
|ρ|

∣∣∣∣ ≤ ε

∣∣∣ρ)
≥ 1 − α,

where ρ is defined as in (6), the correlation between xnew
and the perpendicular space of the space spanned by included
variables, and ρ̂ is the sample correlation between xI

new and
span{1m,xI

1 , . . . ,xI
k }⊥. This implies that with high probability,

the bias in the correlation due to the subsampling is not large
compared with the true correlation. Then, roughly with proba-
bility at least 1 − α, the approximate t-ratio is

|t̂| = |γ̂new|
σ̂ |ρ̂| = |γ̂new|

σ̂ |ρ|(1 + (|ρ̂| − |ρ|)/|ρ|)

≈ |γ̂new|
σ̂ |ρ|

(
1 − |ρ̂| − |ρ|

|ρ|
)

.

Consequently, with probability at least 1 − α,

(1 − ε)|ttrue| � |t̂| � (1 + ε)|ttrue|. (12)

Recall that ρ2 = 1 − R2
new|1···k. Let z = P⊥

Xxnew, where the

operator P⊥
X is defined as in Proposition 1. Then ρ is the sam-

ple correlation of xnew and z. Also assume that (xnew, z) are
random iid samples from a bivariate normal population with
correlation ρ0. Then, approximately,

1

2
log

(
1 + ρ

1 − ρ

)
approx∼ N

(
1

2
log

(
1 + ρ0

1 − ρ0

)
,

1

n − 3

)
.

Thus, conditional on the observations (and due to the fact that
we sample without replacement), we have approximately

1

2
log

(
1 + ρ̂

1 − ρ̂

)∣∣∣ρ approx∼ N

(
1

2
log

(
1 + ρ

1 − ρ

)
,

1

m − 3

)
. (13)

Because we focus on datasets with huge n’s and in high-
dimensional spaces, it is unlikely that two random vectors

would be highly correlated. In fact, we can show that a d-
dimensional space can tolerate up to O(d2) random vectors
with angles exceeding π/4. In light of this fact and the approx-
imate sample distribution (13), a crude calculation by assuming
|ρ| >

√
2/2 shows that m ≥ 200 can guarantee an ε ≤ 0.1 and

an α ≤ 0.05 in (12).
As a numerical example, we examined the Boston housing

dataset, which contains 506 census tracts in Boston from the
1970 census. These data and their description can be down-
loaded from the UCI Repository of Machine Learning Data-
bases at http://archive.ics.uci.edu/ml/ . We took MEDV, the me-
dian value of owner-occupied homes, as our response variable.
We then sequentially added the other 13 variables in a multiple
linear regression model as explanatory variables. In each step,
we computed the “true” t-ratio ttrue of the incoming variable by
replacing the new RMSE with the old one (see Section 2.3).
In addition, we repeated subsampling with size m = 200 and
our fast evaluation procedure 100 times, resulting in 100 fast
t-ratios |t̃|. We then collected the ratios |t̃|/|ttrue|.

Figure 6 shows a comparative boxplot summarizing these ex-
perimental results on the 13 explanatory variables of the Boston
housing data. As shown in the boxplot, taking ε = 0.1, most of
the ratios lie within the interval [1 − ε,1 + ε]. To see how sen-
sitive these bounds are to the actual correlation, we computed
|ρ| based on Proposition 1; these |ρ|’s are annotated under the
corresponding variables in Figure 6 and are also listed in Ta-
ble 1. Several variables have |ρ| less than

√
2/2. For these vari-

ables, despite high variances, the ratios of absolute t-ratios are
well bounded by 1±15%. This experiment validates our earlier
claim that with a subsample size of m = 200, our fast evaluation
mechanism can provide a tight bound on the accuracy in terms
of the t-ratio approximation.

Because VIF regression does a single pass over the pre-
dictors, it has a total computational complexity of O(pmq2),
where m is the subsample size and q is the number of variables
in the final model. Assuming sparsity in the model found, q can
be much smaller than n; thus, as long as m = O(n/q2), which

Figure 6. Simulation of |t̂| for the Boston housing data. We added these variables into our multiple linear regression model sequentially. For
each variable, the approximate t-ratio |t̂| = |γ̂new|/σ̂ |ρ̂| was computed based on a subsample of size m = 200. These boxplots result from a
simulation of 100 subsample sets. Annotated below the variables are the true |ρ|’s. The online version of this figure is in color.

http://archive.ics.uci.edu/ml/
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Table 1. True |ρ|’s in the Boston housing data. We added these
variables into our multiple linear regression model sequentially.

The |ρ| values when the corresponding variable is added in
the model are displayed. These |ρ|’s are computed using (6)

CRIM ZN INDUS CHAS NOX RM AGE
1.00 0.98 0.79 0.99 0.62 0.90 0.64

DIS RAD TAX PTRATIO B LSTAT
0.51 0.66 0.33 0.75 0.87 0.58

can be easily achieved based on our earlier discussion, the total
computational complexity is O(pn).

5. STABILITY

Proposition 3 guarantees that our algorithm will not overfit
the data. In this section we develop a theoretical framework and
show that our algorithm will not miss important signals.

A locally important variable gets added into the model if its
reduction to the sum of squared errors exceeds the penalty λ

that it brings to the penalized likelihood. However, if this im-
portance can be washed out or masked by other variables, then,
for prediction purposes, there is no difference between this vari-
able and its surrogates, and thus neither of them can be claimed
“true.” This situation is common in our application, because we
consider predictors that are correlated or even highly correlated
by including high-order interactions. Predictive accuracy will
be lost only when those globally important variables, which
stand out in any scenarios, are missed. Toward this end, we
propose the following theorem, which guarantees that none of
these important variables will be missed.

Let M be the subset of nonconstant variables that are cur-
rently chosen. We define

Sλ,η(M) =
{

x :
SSEM − SSEM∪x

SSEM/(n − |M| − 1)
> (1 + η)λ

}
(14)

as the collection of variables that are λ-important with respect
to model M and

Sλ,η =
⋂

M
Sλ,η(M) (15)

as the collection of λ-important variables. Note that both of
these are random sets; that is, they depend on the observed data.
Let Ĉstep, Ĉstream, and ĈVIF be the models chosen by stepwise re-
gression, streamwise regression with an α-investing rule, and
VIF regression, respectively. An investing rule is called η-
patient if it spends at a sufficiently slow rate such that it has
enough saved to spend at least i−(1+η) on the ith variable. For
example, the investing rules in Zhou et al. (2006) and Foster
and Stine (2008) can be chosen to be η-patient. We have the
following theorem.

Theorem 1. When the algorithms stop,

(1) Sλ,0 ⊂ Ĉstep.
(2) If the number of candidate predictors p > 7 and an η-

patient investing rule is used, then S2 log p,η ⊂ Ĉstream.
(3) Suppose that the x’s are multivariate Gaussian. If we use

an η(1 − η)/2-patient investing rule and our sampling
size m is large enough, then, for any x ∈ S2 log p,η , we
have P(x ∈ ĈVIF) > 1 − O(1/m).

In other words, any 2 log p-important variable likely will be
included by the VIF algorithm.

Proof of Theorem 1. (1) ∀x ∈ Sλ,η , if x /∈ Ĉstep, then
SSEĈstep

+ |Ĉstep| · λσ̂ 2
Ĉstep

< SSEĈstep∪x + (|Ĉstep| + 1) · λσ̂ 2
Ĉstep

,

and SSEĈstep
− SSEĈstep∪x < λσ̂ 2

Ĉstep
= λSSEĈstep

/(n − |Ĉstep| −
1), which contradicts the definition of Sλ,η .

(2) Suppose that the current model is M0. If the next predic-
tor xi ∈ S2 log p,η , then it has a t-statistic, ti, that meets

P(|Z| > |ti|) < P(|Z| > √
(1 + η)2 log p)

<
2 exp{−(1 + η)2 log p/2}√

(1 + η)2 log p
<

1

p(1+η)

as long as p > 7. Thus x will be chosen by any η-patient invest-
ing rule.

(3) We follow the notation given in Section 4. Suppose that

the current model is M0. Let ρ =
√

1 − R2
xi|M0

> 0 and ρ̂ be

its VIF surrogate. If the next candidate predictor xi ∈ S2 log p,η

has a VIF-corrected t-statistic t̂i and true t-statistic ti, we then
have

P

(
|t̂i| >

√(
1 + η

2
− η2

2

)
2 log p

∣∣∣X,y, M0

)

> P

(
|t̂i| > |ti|

√
1 − η

2

∣∣∣X,y, M0

)
= P

(
|ρ̂| < |ρ|√

1 − η/2

∣∣∣ρ)
= P

(
ρ̂2 <

ρ2

1 − η/2

∣∣∣ρ)
> P

(
ρ̂2 < ρ2

(
1 + η

2

)∣∣∣ρ)
> 1 − m̃−1/2 8(1 − ρ2) + η

2ηρ
φ(κ) + m̃−1/2 3ρ2 − 1

2ρ
κ2φ(κ)

+ m̃−1
(

1

2ρ2
− 2 + 13

4
ρ2

)
κ3φ(κ)

− m̃−1 (3ρ2 − 1)2

8ρ2
κ5φ(κ) + O

(
m̃−3/2)

> 1 − O(m−1), (16)

where m̃ = m − 3/2 + ρ2/4, κ = m̃1/2ηρ/4(1 − ρ2), φ(·) is
the density function of standard normal distribution, and the
expansion in the sixth line follows Konishi (1978), with m >

16(1−ρ2)/ρ2η2 +2. Note that κ3φ(κ) is bounded and the first
two nonconstant terms are as small as order m−1 with suffi-
ciently large m; the third term is always positive, which covers
the last two terms. The final bound follows from these.

Several recent articles have addressed the selection consis-
tency of forward selection. Wang (2009) used stepwise regres-
sion to screen variables and then performed the common l1
methods on the screened variables. The author showed that
the screening path would include the true subset asymptoti-
cally, and thus the consistency of l1 methods might pertain.
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Cai and Wang (2010) used orthogonal matching pursuit, which
is essentially a stagewise regression algorithm. They showed
that with certain stopping rules, the important variables (with
large true β) can be fully recovered with high probability. How-
ever, both articles assume near-orthogonality and use parame-
ters to constrain multicollinearity, with bounded eigenvalues in
the former and mutual incoherence in the latter. Zhang (2009)
made similar assumptions. In our statistical applications, how-
ever, multicollinearity is common because we consider interac-
tion terms, and thus such consistency results are of limited util-
ity. Also, as long as multicollinearity exists, there is no proper
definition for “true variables,” because the significance of one
variable might be washed out by other variables. Thus, the best
that can be achieved are theorems such as the foregoing guaran-
teeing that high signal predictors will not be missed if no other
predictors are highly correlated with them. If multiple predic-
tors are high signal but correlated, then we will find at least one
of them.

6. NUMERICAL EXPERIMENTS

To test the performance of VIF regression, we compare it
with the following four algorithms:

• Classic Stepwise regression. For the penalty criterion, we
use either BIC or RIC, depending on the size of the data.

• Lasso, the classic l1 regularized variable selection method
(Tibshirani 1996). Lasso can be realized by the least angle
regression (LARS) algorithm (Efron et al. 2004), scaling
in quadratic time in the size, n of the data set.

• FoBa, an adaptive forward–backward greedy algorithm
focusing on linear models (Zhang 2009). FoBa does a
forward–backward search; in each step, it adds the most
correlated predictor and/or removes the least correlated
predictor. This search method is very similar to stagewise
regression, except that it behaves adaptively in backward
steps. Zhang (2009) provided a theoretical bound on the
parameter estimation error.

• GPS, the generalized path-seeking algorithm (Friedman
2008). GPS is a fast algorithm that finds �ε regularized
models via coordinate descent. For p � n, its computa-
tion can be as fast as linear in n (Friedman 2008). GPS can
compute models for a wide variety of penalties, and selects
the penalty via cross-validation.

In the following sections, we examine different aspects of
these algorithms, including speed and performance, on both
synthetic and real datasets. All of the implementations were
done in R, a widely used statistical software package (avail-
able at http://www.r-project.org/ ). We emphasize that, unlike
our VIF algorithm and stepwise regression, whose penalties are
chosen statistically, the other three algorithms are cast as op-
timization problems and thus require cross-validation to deter-
mine either the penalty function (GPS) or the sparsity (Lasso
and FoBa). Because sparsity is generally unknown, to fairly
compare these algorithms, we did not specify the sparsity even
for synthetic data. Instead, we used five-fold cross-validation
for Lasso and GPS and two-fold cross-validation for FoBa.
Note that this adds only a constant factor to the computational
complexity of these algorithms.

6.1 Design of the Simulations

In each simulation study, we simulated p features, x1, . . . ,xp.
We mainly considered three cases of collinearity: (1) the x’s are
independent random vectors with each Xij (the jth element of
xi) simulated from N(0,0.1), that is, the x’s are jointly Gaussian
with covariance matrix �1 = τ 2Ip, where τ 2 ≡ 0.1; (2) the x’s
are jointly Gaussian with covariance matrix

�2 = τ 2

⎛⎜⎜⎝
1 θ · · · θp−1

θ 1 · · · θp−2

...
...

. . .
...

θp−1 θp−2 · · · 1

⎞⎟⎟⎠ (17)

with τ 2 ≡ 0.1; and (3) the x’s are jointly Gaussian with covari-
ance matrix

�3 = τ 2

⎛⎜⎜⎝
1 θ · · · θ

θ 1 · · · θ
...

...
. . .

...

θ θ · · · 1

⎞⎟⎟⎠ (18)

with τ 2 ≡ 0.1. We randomly picked q = 6 variables from
these p variables. The response variable y was generated as
a linear combination of these q variables plus a random nor-
mal noise. The q predictors have equal weights, β = 1, in all
sections except Section 6.5, where the weights are set to be
{6,5,4,3,2,1}. The random normal noise in most sections has
mean 0 and variance 1 without further explanation; its variances
varies from 0.4 to 4 in Section 6.5 to investigate different signal-
to-noise ratios.

In all simulations, we simulated 2n independent samples,
then used n of them for variable selection and another n for
out-of-sample performance testing. The out-of-sample perfor-
mance was evaluated using the mean sum of squared errors,∑2n

i=n+1(yi − xiβ̂)2/n, where β̂ is the output coefficient deter-
mined by the five algorithms based on the training set, namely
the first n samples. The sample size n is fixed at 1000 without
further clarification. Because the true predictors were known,
we also compared the true discovery rate and FDR in Sec-
tion 6.3.

6.2 Comparison of Computation Speed

We simulated the independent case to measure the speed of
these five algorithms. The response variable y was generated by
summing six of these features with equal weights plus a random
noise N(0,1). Considering the speed of these five algorithms,
the number of features p varies from 10 to 1000 for all five
algorithms, and from 1000 to 10,000 for VIF regression and
GPS.

As shown in Figure 7, VIF regression and GPS perform al-
most linearly and are much faster than the other three algo-
rithms. Given the fact that it does a marginal search, the FoBa
algorithm is surprisingly slow; thus we did not perform cross-
validation for this speed benchmarking.

To further compare VIF and GPS, Figure 8 shows two close-
up plots of the running time of these two algorithms. Both plots
appear to be linear in p, the number of candidate predictors. Al-
though GPS leads when p is small, VIF regression has a smaller
slope and is much faster when p is large.

http://www.r-project.org/
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Figure 7. Running time (in seconds) of the five algorithms VIF re-
gression, stepwise regression, Lasso, FoBa, and GPS. The algorithms
were asked to search for a model given n = 1000 observations and p
candidate predictors; p varies from 10 to 1000. The online version of
this figure is in color.

6.3 mFDR Control

To test whether or not these algorithms successfully control
mFDR, we studied the performance of the models chosen by
the five algorithms based on the training set. We took the simu-
lation scheme in Section 6.1 and repeated the same simulation
50 times. We then computed the average numbers of false dis-
coveries and true discoveries of features, denoted by ̂E(V) and
Ê(S), respectively. Taking an initial wealth of w0 = 0.5 and a
payout of 
w = 0.05 in our VIF algorithm, with an η = 10 in

Figure 8. Running time (in seconds) of VIF regression and GPS
algorithm. The algorithms were asked to search for a model given
n = 1000 observations and p candidate predictors; p varies from 10
to 10,000. The online version of this figure is in color.

Table 2. Summary of the average numbers of true discoveries, false
discoveries, and estimated mFDR using the five algorithms in the
experiment with independent Gaussian features. The training set

contained 1000 observations and p features, six of which were used to
create the response variables. This simulation was repeated 50 times

Methods

Cases VIF Stepwise FoBa GPS Lasso

p = 100 True 6.0 6.0 6.0 6.0 5.86
False 0.82 0.02 0.04 0.18 38.82

mFDR 0.049 0.001 0.002 0.011 0.710

p = 200 True 6.0 6.0 6.0 6.0 5.38
False 0.56 0.04 0.02 0.08 70.02

mFDR 0.034 0.002 0.001 0.005 0.820

p = 300 True 6.0 6.0 6.0 6.0 5.66
False 0.60 0.06 0.02 0.04 75.44

mFDR 0.036 0.004 0.000 0.002 0.828

p = 400 True 6.0 6.0 6.0 6.0 5.50
False 0.56 0.10 0.00 0.02 93.78

mFDR 0.034 0.006 0.000 0.001 0.858

p = 500 True 6.0 6.0 6.0 6.0 5.48
False 0.58 0.04 0.00 0.04 117.78

mFDR 0.035 0.002 0.000 0.002 0.884

Proposition 3, the estimated mFDR is given by

̂mFDRη = ̂E(V)

̂E(V) + Ê(S) + η
. (19)

Table 2 summarizes Ê(S), the average number of true dis-
coveries; ̂E(V), the average number of false discoveries; and
̂mFDRη, the estimated mFDR, in the first simulation with inde-
pendent Gaussian features. As can be seen, all algorithms but
Lasso successfully spotted the six true variables and controlled
mFDR well. This is not surprising, because these algorithms
aim to solve nonconvex problems (Section 1). Lasso solves a
relaxed convex problem and thus tends to include many spu-
rious variables and then shrinks the coefficients to reduce the
prediction risk.

Table 3 provides a similar summary for the case where the
features were generated using a multivariate Gaussian distribu-
tion with the covariance matrix given in (17). Lasso again was
not able to control mFDR. Both stepwise regression and FoBa
controlled mFDR at low levels in all cases. GPS and VIF re-
gression also did well except for the case with very high multi-
collinearity. However, as we mentioned earlier, in the case with
high multicollinearity, each of the collinear predictors could
make a contribution to model accuracy, because we are building
a nested model. Thus it is difficult to claim that the “false dis-
coveries” are indeed false in building a multiple linear model.
In any case, because our main purpose in using an α-investing
control rule is to avoid model overfitting, we examine their out-
of-sample performance in the next section.

6.4 Out-of-Sample Performance

We used the aforementioned n = 1000 held-out observations
to test the models chosen by the five algorithms. The case
with independently generated features is illustrated in Figure 9,
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Table 3. Summary of the average numbers of true discoveries, false
discoveries, and estimated mFDR using the five algorithms in the

experiment with jointly Gaussian features. The training set contained
1000 observations and 200 features, six of which were used to create
the response variables. The θ in (17) were taken to be 0.1, 0.3, 0.5,

0.7, and 0.9. This simulation was repeated 50 times

Methods

Cases VIF Stepwise FoBa GPS Lasso

θ = 0.1 True 6.00 6.00 6.00 6.00 5.64
False 0.56 0.02 0.02 0.26 72.94

mFDR 0.034 0.001 0.001 0.016 0.823

θ = 0.3 True 6.00 6.00 6.00 6.00 5.54
False 2.04 0.02 0.02 0.12 68.40

mFDR 0.113 0.001 0.001 0.007 0.815

θ = 0.5 True 6.00 6.00 6.00 5.90 5.86
False 6.30 0.04 0.10 0.20 74.12

mFDR 0.282 0.002 0.006 0.012 0.824

θ = 0.7 True 6.00 6.00 6.00 6.00 5.84
False 13.20 0.04 0.16 0.60 64.58

mFDR 0.452 0.002 0.010 0.036 0.803

θ = 0.9 True 5.46 5.66 5.46 5.84 5.90
False 32.30 0.33 0.64 2.44 76.22

mFDR 0.676 0.019 0.038 0.133 0.827

which shows a comparative boxplot for the out-of-sample mean
squared errors of the five chosen models in 50 runs. As can be
seen, the models chosen by VIF regression perform as well as
the two best algorithms (stepwise regression and FoBa) and bet-
ter than GPS and Lasso. Figure 10 provides a similar scenario
for jointly Gaussian features, except for the case with extremely
high correlation. Here VIF regression has slightly higher mean
squared errors but is still better than GPS and Lasso. The lat-
ter boxplot clarifies our claim that although VIP regression dis-
covered more “false discoveries,” these features were not truly
false. In fact, they helped build a multiple model that did not
overfit, as shown in Figure 10. In this sense, VIF regression
does control mFDR. Given that VIF regression is significantly
faster than other algorithms, these results are very satisfactory.

6.5 The Effect of Signal-to-Noise Ratio

To show how the signal-to-noise ratio might affect our algo-
rithm, we took the simulation scheme with �2 and θ = 0.5 or
0.9. The number of features p was fixed as 200. y was a linear
combination of q = 6 randomly chosen variables with weights
of 1–6, plus an independent random noise, N(0, ν2), where ν

varies between 0.4 and 4. We used w0 = 0.5 and 
w = 0.05 for
the VIF algorithm.

We computed the out-of-sample mean squared errors on the
n = 1000 held-out samples. To better illustrate the performance
of the five algorithms, we report the ratio of the out-of-sample
mean squared errors of other algorithms to that of VIF re-
gression, that is,

∑2n
i=n+1(yi −Xβ̂other)

2/
∑2n

i=n+1(yi −Xβ̂vif)
2.

A ratio less than (greater than) 1 implies better (worse) perfor-
mance of the algorithm compared with that of the VIF regres-
sion.

In general, VIF regression was slightly worse than stepwise
regression and FoBa, but was much better than GPS and Lasso.
When the multicollinearity of the variables was weak (with
θ = 0.5), as shown in Figure 11, the VIF regression performed
almost as well as stepwise regression and FoBa (with ratios very
close to 1). GPS performed poorly when the signal was strong
but was closer to VIF when the signal was weaker; Lasso was
consistently worse than VIF. When the multicollinearity of the
variables was moderate (with θ = 0.9), Figure 12 shows that
stepwise regression and FoBa could have a >5% gain over the
VIF regression; the performance of Lasso remained the same,
but the performance of GPS was almost identical to that of VIF
regression when the signal was weak. Thus, GPS benefited sub-
stantially from its shrinkage in cases with large noise and strong
multicollinearity. In a nutshell, the VIF regression maintains its
good performance under changing signal-to-noise ratios.

We also compared the Naïve algorithm without the VIF cor-
rection under this setup in Figure 13. Its performance was iden-
tical to that of VIF regression when θ = 0.5. This performance
under weak multicollinearity was guaranteed in the literature
(see, e.g., Tropp 2004; Cai and Wang 2010). However, when the
multicollinearity was moderate (θ = 0.9), the Naïve algorithm

Figure 9. Out-of-sample mean squared errors of the models chosen by the five algorithms in the simulation study with independent distributed
features. The number of features p varied from 100 to 500 (from left to right in the figure).
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Figure 10. Out-of-sample mean squared errors of the models chosen by the five algorithms. The 200 candidate features were simulated under
the second scenario with θ = 0.1,0.3,0.5,0.7, and 0.9 in �2 (from left to right in the figure).

Figure 11. Ratio of out-of-sample mean squared errors of the models chosen by the other four algorithms to that of VIF regression. A ratio
less than (greater than) 1 implies a better (worse) performance of the algorithm compared with the VIF regression. The 200 features were
simulated under the second scenario with θ = 0.5 in �2. The online version of this figure is in color.

Figure 12. Ratio of out-of-sample mean squared errors of the models chosen by the other four algorithms to that of VIF regression. A ratio
less than (greater than) 1 implies a better (worse) performance of the algorithm compared with the VIF regression. The 200 features were
simulated under the second scenario with θ = 0.9 in �2. The online version of this figure is in color.
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Figure 13. Ratio of out-of-sample mean squared errors of the mod-
els chosen by the Naïve algorithms to that of VIF regression. A ratio
less than (greater than) 1 implies a better (worse) performance of the
algorithm compared with VIF regression. The 200 features were sim-
ulated under the second scenario with θ = 0.5 and θ = 0.9 in �2. The
online version of this figure is in color.

performed worse than VIF correction, especially when the sig-
nal was relatively strong. These results again demonstrate the
need for the VIF correction in real applications, where testing
the mutual incoherence (weak multicollinearity) is NP hard.

6.6 Robustness of w0 and 
w

In our algorithm we have two parameters, w0 and 
w, that
represent the initial wealth and the investment. In this section
we investigate how the choices of these two parameters might
affect the performance of our algorithm.

We took the first simulation scheme and simulated p = 500
independent predictors. The response variable y was generated
as the sum of q = 6 randomly sampled predictors plus a stan-
dard normal noise. We then let the VIF regression algorithm
choose models, with w0 varying from 0.05 to 1 and 
w varying
from 0.01 to 1. We computed the out-of-sample mean squared
errors for each pair of (w0,
w). We repeated the whole process
50 times.

Figure 14 illustrates the median, median absolute deviation
(MAD), mean, and standard deviation (SD) of these out-of-
sample mean squared errors. We note that the robust measures,
median and MAD, of these out-of-sample errors were very sta-
ble and remained the same for almost all (w0,
w) pairs. The
less robust measures, mean and SD, showed some variation for
the pairs with small values. With fixed 
w, the out-of-sample
performance did not change much with different w0’s. In fact,
because w0 will be washed out with an exponential decay rate
in the number of candidate variables being searched, it matters
only for the first few important variables, if there are any.

The out-of-sample mean squared errors with large w0 and
large 
w tended to be small and to have small variance. This is

because o(n/ log n) variables can be allowed in the model with-
out overfitting (see, e.g., Greenshtein and Ritov 2004). Thus
it will not hurt to include more variables by relaxing w0 and

w for prediction purposes. Although the pair that we used
for all of the simulations, w0 = 0.5 and 
w = 0.05, has rel-
atively higher mean squared errors, we are more interested
in the statistical ability of better controlling mFDR. The nu-
merical experiments in this section suggest that were predic-
tion accuracy the only concern, then one could use larger w0

and 
w.

7. REAL DATA

In this section we apply our algorithm to three real data
sets: the Boston housing data, a set of personal bankruptcy
data, and a call center data set. The Boston housing dataset
is small enough to allow us to compare all of the algorithms
and show that VIF regression maintains accuracy even with a
substantially increased speed. The bankruptcy data are of mod-
erate size (20,000 observations and 439 predictors or, on av-
erage, more than 27,000 predictors when interactions are in-
cluded), but interactions that contribute significantly to the pre-
diction accuracy increase the number of features to the tens
of thousands, making the use of much of the standard feature
selection and regression software impossible. The call center
dataset is even larger, with more than 1 million observations
and, once interactions are included, more than 14,000 predic-
tors.

7.1 Boston Housing Data-Revisited

Here we revisit the Boston Housing data discussed in Sec-
tion 4. Discussions of this dataset in the literature have dealt
mainly with 13 variables. To make the problem more demand-
ing, we included multiway interactions up to order 3 as po-
tential variables. This expands the scope of the model and al-
lows a nonlinear fit. On the other hand, it produces a feature
set with high multicollinearity. We performed five-fold cross-
validation on the data; that is, we divided the data into five
pieces, built the model based on four of these pieces, and tested
the model on the remaining piece. The results are summarized
in Table 4. Not surprisingly, stepwise regression gave the best
performance overall, because it attempted to build the sparsest
possible model with strong collective predictability and thus did
not suffer much from the multicollinearity. However, the strong
multicollinearity caused trouble for GPS, the leader in the case
without interactions. A possible explanation for this is that due
to the strong collinearity, GPS had a hard time making a unified
decision on the working penalty for the different folds. This
variability in penalties led to a much larger variance in model
performances. As a result, the test errors tended to be large and
to have a high variance, as shown in Table 4. The same prob-
lem was seen with Lasso, which did well only with small p and
weak collinearity. VIF regression did well in both cases, be-
cause it attempted to approximate the search path of stepwise
regression; the substantially improved speed came at a cost of
slightly higher errors.
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Figure 14. Statistics of out-of-sample mean squared errors with various w0 and 
w. The online version of this figure is in color.

7.2 Bankruptcy Data

We also applied VIF regression to the bankruptcy data that
were originally used by Foster and Stine (2004). This sample
dataset contains 20,000 accounts and 147 features, 24 of which
are categorical. It has substantial missing data. It is well un-
derstood that missing data serve to characterize the individual
account behaviors (Jones 1996); that is, knowing which data are
missing improves model predictivity. Thus, instead of filling in
with expected values based on the observed data, we use an in-
dicator for each of them, as done by Foster and Stine (2004). We
also decompose each of the 24 categorical variables that have
categories (l) >2 into l − 1 dummy variables. Thus we have

a total of 439 features for our linear model. To dynamically
select interaction terms, we first apply VIF regression on the
439 linear features to get a baseline subset, C0. We then apply
VIF regression with subsampling size m = 400 on the interac-
tion terms of the selected variables in C0 and all of the features.
Thus, we considered a total of p = (|C0| + 1) × 439 candidate
variables, as summarized in Table 5.

To evaluate the classification performance, we perform a
five-fold cross-validation and use the 0–1 loss function to com-
pute the in-sample and out-of-sample classification errors for
each fold. We compared two different cutoff rules, ξ1 = 1 −
#BANKRUPTCIES/nCV, where #BANKRUPTCIES is the number
of bankrupt accounts in sample, and ξ2 = 8/9.

Table 4. Boston housing data: Average out-of-sample mean squared error in a five-fold cross-validation study.
The values in parentheses are the standard error of the these average mean squared errors

Methods

Cases p VIF Stepwise FoBa GPS Lasso

No interactions 13 35.77 (26.25) 39.37 (26.11) 41.52 (33.33) 35.26 (19.56) 37.40 (24.67)
3-interactions 403 26.57 (22.68) 26.39 (18.54) 31.62 (23.94) 95.75 (98.36) 96.76 (47.10)
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Table 5. Bankruptcy data: The performance of VIF and stepwise regression on a five-fold cross-validation

Method #bankruptcies |C0| p Time in.err1 out.err1 in.err2 out.err2

VIF 366 60.8 27,130 88.6 0.020 0.021 0.021 0.021
Stepwise – – 22,389 90 0.023 0.023 0.022 0.022

NOTE: Time: CPU running time in minutes. in.err1/out.err1: In-sample classification errors/Out-of-sample classification errors using ξ1.

in.err2/out.err2: In-sample classification errors/Out-of-sample classification errors using ξ2. All numbers are averaged over the five folds.

We also performed a comparison with stepwise regression
by generating 22,389 predictors and using stepwise regression
to choose variables. Given a time limit of 90 minutes, stepwise
regression could select (on average) only four variables, com-
pared with 400 features selected by VIF. We were not able to
run the other three algorithms on these data.

7.3 Call Center Data

The call center data that we explore in the section are col-
lected by an Israeli bank. On each day, the number of calls to
the customer center was counted every 30 seconds. This call
value is the dependent variable to be predicted. The data were
collected between November 1, 2006, and April 30, 2008, a to-
tal of 471 days (a few days are missing). Thus we have a total
of n = 1,356,480 observations. Similar data sets have been in-
vestigated by Brown et al. (2005) and Weinberg, Brown, and
Stroud (2007).

To ensure approximately normal errors, we performed a vari-
ance stabilization transformation (Brown et al. 2005) to the
number of counts N:

y = √
N + 1/4.

The variables that we investigated for possible inclusion in
the model included day of week {xd}6

d=1, time of day φ
f
t and

ψ
f
t , and lags yt−k. For time of day, we considered Fourier trans-

forms

φ
f
t = sin

(
2π f · t

ω

)
and ψ

f
t = cos

(
2π f · t

ω

)
,

where ω = 2880, the length of the daily period, and f varies
from 1 to 210. We also considered interactions between day of
week and time of day, {φf

t ·xd} and {ψ f
t ·xd} as explanatory vari-

ables. This resulted in a set of 2054 base predictors and 12,288
interactions.

We again performed five-fold cross-validation to test our per-
formance. Our VIF regression selected on average 82 of the fea-
tures and gave an in-sample R2 of 0.779 and an out-of-sample
R2 of 0.623. The features selected were primarily interactions
between day of week and time of day, as summarized in Table 6.

Note that the in-sample performance is better than the out-
of-sample performance because of the autoregressive nature of

these data. The feature selection criteria that we used guaran-
tees only that there will be no overfitting for the case of in-
dependent observations. For nonindependent observations, the
effective sample size is smaller than the actual number of obser-
vations, and thus adjusted criteria should be taken into account.
We also considered adding autoregressive effects (i.e., lag vari-
ables {yt−k}) in the model. We gained both in-sample and out-
of-sample R2 as high as 0.92. However, in the typical use of
models of call center data, estimating the number of calls to de-
termine staffing levels, {yt−k}, is not available at the time that
the staffing decisions need to be made and so cannot be used
for prediction. The speed and flexibility of our algorithm en-
able us to efficiently extract informative relationships for such
large-scale data.

8. DISCUSSION

Fast and accurate variable selection is critical for large-scale
data mining. Efficiently finding good subsets of predictors from
numerous candidates can greatly alleviate the formidable com-
putation task, improve predictive accuracy, and reduce the la-
bor and cost of future data collection and experiments. Among
the various variable selection algorithms available, stepwise re-
gression has been empirically shown to be accurate but compu-
tationally inefficient; l1 and lε algorithms are less accurate in
highly sparse systems. In this article we have proposed a hybrid
algorithm, VIF regression, that incorporates a fast and simple
evaluation procedure. VIF regression can be adapted to various
stepwise-like algorithms, including a streamwise regression al-
gorithm using an α-investing rule. Because of the one-pass na-
ture of the streamwise algorithm, the total computational com-
plexity of this algorithm can be reduced to O(pn) as long as the
subsample size is m = O(n/q2), which can be easily achieved in
large-scale datasets. Furthermore, by using an α-investing rule,
this algorithm can control mFDR and avoid overfitting. Our ex-
perimental results demonstrate that our VIF algorithm is sub-
stantially as accurate as, and faster than, other algorithms for
large-scale data. Based on these results, we believe that the VIF
algorithm can be fruitfully applied to many large-scale prob-
lems. VIF regression code in R is available at the CRAN repos-
itory (http://www.r-project.org/ ).

[Received February 2010. Revised October 2010.]

Table 6. Call center data: Performance of VIF and selected variables on a five-fold cross-validation

# of selected variables Performance

Day of week Time of day Interactions In-sample R2 Out-of-sample R2

Average 6 18.4 57.8 0.779 0.623

NOTE: All numbers are averaged over the five folds.

http://www.r-project.org/
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