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A Simple Ancillarity Paradox 

DEAN P. FOSTER 

University of Pennsylvania 

EDWARD I. GEORGE 

University of Texas at Austin 

ABSTRACT. For the problem of estimating the mean of a univariate normal distribution with 
known variance, the maximum likelihood estimator (MLE) is best invariant, minimax, and 
admissible under squared-error loss. It is shown that if the variance is the realized value of an 
ancillary statistic with known distribution, the MLE can be inadmissible with respect to the 
unconditional risk averaged over this ancillary distribution. 

Key words: admissibility, ancillary statistics, conditional inference, risk 

1. The paradox 

An ancillarity paradox may be succinctly defined as a phenomenon where "a procedure 
which is conditionally admissible for each value of an ancillary statistic can be uncondition- 
ally inadmissible" (Berger, 1990). In this paper, we show that such an ancillarity paradox 
can occur even in the simple and familiar setting where we wish to estimate ,u from the 
observation of a single normal random variable X- N(p, v) with v known. Under expected 
squared-error loss 

R(5, I, v) -E(b _ j)2, (1) 

the MLE 5 MLE = X is best invariant, minimax and admissible. Now suppose that v is the 
realization of an ancillary statistic V with a known distribution Fv which does not depend on 
,u. In spite of the widely held notion that inference about ,i should be conditional on V= v, 
it turns out that it can matter very much if in the long run this experiment is repeated over 
and over. 

The main thrust of this paper is to show that for certain Fv, 6MLE is unconditionally 
inadmissible in the following sense. For such Fv, the estimator 

6V 6V(X V)=( I X2 + )x (2) 

uniformly dominates 5MLE under the unconditional risk 

R(6, p) EFVR(b, ,, V) = EFvEv(6 _ p)2. (3) 

One such Fv under which this unconditional dominance occurs has continuous density 

f (v) = a' -(a > I)I (4) 

where 1 < a < ao with oco specified in theorem 3 below. The proof of dominance for this and 
other Fv is the subject of section 3. 

A situation in which the above setup arises naturally is the estimation of the drift of 
Brownian motion observed only at a random stopping time. More precisely, let Z(t) be a 
Brownian motion with drift rate p and variance rate 1, i.e. Z(t) - N(yt, t). The problem is to 
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estimate ,u based on Z(T) and T, where T is a stopping time which is independent of Z(t). 

But this is equivalent to estimating p based on X -Z(T) /T and V I/T, where X I VI 

N(yu, V). Thus, our results show that the MLE for ,u may be inadmissible for an ancillary T, 

and provide a dominating estimator. A related result by Brown (1988) shows that in this 

context the MLE can be inadmissible for random T which is not ancillary. 

Our ancillarity paradox persists for a large variety of loss functions. The following lemma 

(whose straightforward proof is omitted) shows that our results imply that (v dominates 

6 MLE with respect to a wide class of unconditional risks of the form 

R,,(b, /1)-EFvg( V)R(69 pq V). ( S) 

For example, letting g(v) = 1/v, it turns out that for certain Fv (different from Fv given by 

(4)), bv dominates 6 MLE with respect to the unconditional normalized risk 

RNO, 9)=- EFvI R(6,l1, V). (6) vv 

Lemma 1 

Suppose 6 dominates 6MLE with respect to R(6, t) -EFVR(6, P, V) for a distribution Fv. If 
there exists a distribution F'v such that dFv(v) cc (1/g(v)) dFv(v), for a function g(v), then 6 
dominates 6 MLE with respect to RG(, t) -EFgg(V)R(b, i, V). 

The underlying intuition behind our proof in section 3 that 6v unconditionally dominates 
6MLE is based on observing how R(bV, p, v), the conditional risk function of bv, changes as 

v varies, and how the unconditional risk R(bV, ,u) can average these risks to yield smaller 

unconditional risk than 6 MLE. This general feature of ancillarity paradoxes is described 

by Casella (1990). To see how R(bv, u, v) changes as a function of v, Fig. 1 provides 

(lIv)R(bV, ju, v) (obtained by numerical integration), for v = 1, 10, 100, 1000, 10000, where 

the horizontal axis has been compressed to present (- oo, + so). Consider first the shape of 

R(b V, u, 1), the risk of 6 v when V = 1, which corresponds to the solid line curve with maxima 

closest to ju = 0. R(bv, ku, 1) obtains its minimum at ju = 0, where R(bv, 0, 1) - 0.46704, 

increases to its maximum, sup, R(bV, u, 1) = 1.25, on either side of 0, and then asymptotes to 

1 as Pi -* + oo. As v is increased, the successive risk functions have wider regions where they 

obtain "improved" risk. It turns out that as a result of this feature, these risk functions can 

be averaged to widen the region of improved risk further. Moreover, R(b MLE, j, v) =v, 

( 1 ~~1 

1 o 

0.8 I 

0.6 1 

co 0 +c 

Fig. 1. Normalized risk functions (lIv)R(6V ,u v) for v = 1, 10, 100, 1000, 10000. 
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which implies that R( MLE, p) = EFV V. Thus, unconditional dominance of 6 MLE by 6 v occurs 
under Fv for which, 

R(6', p) = j'R(v, p, v) dFv(v) < Jv dFv(v) = R(bMLE, p) for all y. (7) 

It may be of interest to note that the general results of Brown (1966) on the admissibility 
of the best invariant estimator of a location parameter can be applied to our setup. It follows 
from his th. 2.4.1 that our ancillarity paradox cannot occur when EV312 < oo. Furthermore, 
when EV = O, 6 MLE has infinite unconditional risk and so can be trivially dominated by any 
6 c c. The distribution Fv satisfying (7) falls within these bounds. Indeed EFv V < O0 

whereas EFV V3/2 = 0O. 

2. Understanding the paradox 

The value of statistical paradoxes lies in what we learn from them. The key to understanding 
our ancillarity paradox is to note that the main issue has to do with the choice of a long run 
sequence for risk evaluation. More precisely, suppose we are interested in the long run 
consequence of using an estimator 6 in our setup. Two different kinds of long run may be 
considered. One long run sequence of interest would consist of repetitions of the uncondi- 
tional experiment where X - N(C, V) after V - Fv, namely 

X', Xy2 (8) 

The long run consequence of using 6 on (8) is measured by the unconditional risk 
R(6, ,u) = EFVE'(6 -_ )2 in (3), which is equal to the limit of the average loss over (almost) 
any realization of this sequence. The other kind of long run of interest would consist only of 
repetitions of the conditional experiment X - N(,, v) for a fixed value of v, namely 

X1, X2 (9) 

The long run consequence of using 6 on (9) is measured by the conditional risk 
R(6, p v) El(6 _- )2 in (1), which is equal to the limit of the average loss over (almost) any 
realization of this sequence. 

From this long run sequence perspective (which we call the "sequence man perspective", 
see also Berger (1984) and Neyman (1977)), conditioning on V = v in (8) corresponds to 
restricting evaluation to a sequence of the form (9). (Strictly speaking, this is only true if Fv 
is a discrete distribution. For continuous Fv, this interpretation is only obtained as the limit 
of suitable discrete approximations to Fv.) In contrast, unconditional evaluation via (8) 
corresponds to evaluation over a mixture of subsequences of the form (9) according to the 
distribution of V, namely Fv. Seen in this way, our ancillarity paradox is simply an example 
where admissibility over conditional sequences of the form (9) does not guarantee admissibil- 
ity over unconditional sequences of the form (8). That this can happen is not so surprising 
when it is understood that risk values are limits of average loss over these sequences. Indeed, 
in our example the effect on the limit of conditional subsequences where 6v fares worse than 
6MLE can be offset in the unconditional sequence by mixing in many other conditional 
subsequences where 6v fares much better than 6MLE. 

At first glance, it appears that the only paradox here is that the relative merits of 6MLE and 
6v depend on whether or not we condition on the ancillary statistic V, which has nothing to 
do with p. However, the real issue is whether it suffices to base risk evaluation on the 
conditional sequence (9), which is the effect of conditioning on the ancillary statistic. This is 
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a serious problem because we do not know in advance which sequence we are facing and 
because, as our paradox shows, good conditional performance may not guarantee good 
unconditional performance. It seems to us that the only way to avoid such potential 
problems is to carry out evaluations from both the conditional and the unconditional points 
of view. 

Our ancillarity paradox has several precedents in the literature. To begin with, Perng 
(1970) and Fox (1981), building on the work of Brown (1966), provide explicit examples 
where the best invariant estimator X of a location parameter It is inadmissible. Although 
these examples do not explicitly refer to an ancillarity paradox, the distributions under which 
X is inadmissible are obtained by mixing a conditional density of the form f(x - v) over 
a distribution on v which does not depend on p. Thus, an ancillarity paradox such as ours 
is implicit in their results. From a purely technical point of view, the only contribution of our 
example is that it is simpler and more clearly exposes the nature of the paradox. 

The main precedent of our ancillarity paradox is the discussion paper by Brown (1990) 
which demonstrates an ancillarity paradox in multiple regression, namely that the least 
squares intercept estimate which, conditionally on the design matrix, is best invariant, 
minimax and admissible, can become unconditionally inadmissible under certain distribu- 
tions on the design matrix, which is ancillary in this problem. Using our above "sequence 
man perspective" with X and V representing the intercept estimate and the design, this 
paradox also occurs because risk evaluation over an unconditional sequence (8) can differ 
markedly from risk evaluation over a conditional sequence (9). In this case, the offending 
distribution on V combines the conditional subsequences in such a way that a multivariate 
Stein phenomenon occurs in the unconditional sequence. 

Although there are other ancillarity paradoxes in the literature (see e.g. Cox, 1958), these 
are fundamentally different in nature from ours. Berger (1990) observes that Brown's 
paradox can be distinguished from these other paradoxes by the fact that it is "impossible to 
determine its inadequacy using conditional reasoning". He points out that other ancillarity 
paradoxes can be resolved by noting that the conditional procedures are Bayes or generalized 
Bayes with respect to different priors. Our paradox shares this distinguishing feature of 
Brown's paradox since it also cannot be resolved by such conditional reasoning. 

3. The proof 

In this section we prove that for certain Fv, 3 v uniformly dominates 6 MLE with respect to the 
unconditional risk (3). However, rather than prove this directly, we first show unconditional 
dominance with respect to variance normalized risk 

RN(, /1, V)-- R(6, /, v). (10) 
v 

That is, we show that for particular Fv, 6 Vdominates 3MLE with respect to 

RN0(, /1) EFVRN(b, i, V), (11) 

the unconditional normalized risk in (6). The dominance result with respect to R(6, P) in (3) 
will then follow as a result of lemma 1. 

The advantage in working with RN(6, ) is that it is easier to see what is driving the main 
result. Indeed, the normalized risk functions in Fig. 1 are just special cases of 

RN(OV, 1, V) = (1/v)R(b, i, v). As v is increased, the successive RN(Ov, P, v) are obtained by 
4;stretching" RN(V, P, 1), a consequence of the fact that 
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RN(5v, /, v) = RN(v, // V/, 1). (12) 

Moreover, RN(b MLE, ", v) -1, which implies that R(b MLE, i) 1. Thus, it suffices to show 
that for some FV 

RN(6v, RN) = RN(V, PI, v) dFy(v) < R(bMLE p) for all .(13) 

We now proceed to construct FV which satisfy (13). Our construction is facilitated by 
considering first, an Fv with discrete support. Based on this discrete Fv, we then obtain 
continuous FV which also satisfy (13). For some 0 < r < 1 and s > 1 (to be specified), a 
discrete FV satisfying (13) has a discrete density of the form 

Pv(s') =(I -r)r', for i = 0, 1, .... (14) 

where [SO, s1, 52, .} is the support of FV. In order to satisfy (13), r and s must be chosen 
so that Fv puts enough weight on successive RN((b, ,u, V). 

For example, it turns out that such an FV is obtained by r = 0.6 and s = 10. For this 
choice, Fig. 2 displays successive conditional risks Ek(p) -EF[RN(6v, P, V) I V < bk] 
for k = 0, . . ., 4. Note that each Ek < 1 (the dotted line) in a region surrounding yi = 0. 
This region becomes wider as k increases because in going from Ek 1 to Ek, the "hump" of 
Ek -1 is canceled out only to be replaced by a new hump of Ek which is smaller and 
further away from zero. Continuing in this manner yields RN( V, k) = liMk - x Ek(u) < 1 for 
all [i. 

The choice of Fv in (14) is based on the following construction of an upper bound 
function for [RN(OV, Pi, 1) - 1]. This function, denoted G(u), is defined by four positive 
constants A, B, a, b to be 

Eo 

El J 

, . . .... . .... 

Fig. 2. Conditional risks EkCu) EFJRN(v, ( , V) I V I Ok] with r = 0.6 and s = 10 for k =0, . 4. 
Each dotted line is 1. 
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B 

0 

[R(6,ll-] >| 

-A 

a b ii 

Fig. 3. G(p) and [RN(5v, jj, )- 1]. 

f-A for <[1la 
G(u)= B for a < u| <_ b (15) 

(Bb2/,i2 for b < Jill < ? 

where these constants are chosen such that 

[1-RN(Ov,O, 1)] > A > B > sup RN(5v,, 1) -1] (16) 

and 

G(C) > [RN(bv, p, 1) -1] for all HI. (17) 

An example of such a choice is displayed in Fig. 3. Although it can be rigorously proved that 
such a G(u) can be chosen using -limits of approximations, this is tedious and we leave it to 
the interested reader. For practical purposes, these constants can be obtained using numeri- 
cal methods. Analysis of RN,(V, /i, v) has also been carried out by Thompson (1968). 

We need the following four constants r, e, c and s specified in order. Choose r to satisfy 

B r < 1. (18) 

Now choose ? > 0 such that 

B + 2? 
r- 

A (19) A 

Now choose c > a to satisfy 

G(p) = Bb2/,u2 < Er for all ,u > c. (20) 

Finally, for the support set {s , 5 2 .} of Fv, let s satisfy 

s > c2/a2 and rs > 2. (21) 

Now define a sequence of functions, 

Gi()=-G(Cu/s i2), i = 0, 1, 2, . . . (22) 
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so that by (12) and (17), 

Gi (j) > [RN(6v, i, s) - 1] for all i, (23) 

and 

-A for lJuI <as i2 

Gi () = B for as"12 < Ij, < bsi12 (24) 

(Bb2shil2 for bsi12 < IP1 < ?? 

To prove our main result, we define 

k 

Hk(1) = (I -r) E r'Gi (u). (25) 
i=O 

Obviously, limk , X Hk(u) > RN(5v j) -1. Our final result, RN(Ov I) < 1 (=RN(6MLE, 05)) 

is then obtained by showing that for all ,u, limkO Hk(II) < 0. 

Lemma 2 
For l81 < ask!2, (i) HkC(u) < Hk l (/l) and (ii) Hk(,u) < 0. 

Proof. (i) follows from the decomposition Hk(y) = Hk- - (i) + ( - r)rkGk(Iz) and the fact 
that GkCu) < 0 for Ik| < as k2. 

(ii) is shown by induction. Since GO(k) G(u), the assertion is true for k = 0. Now assume 
it is true for k - 1. It then follows from (i) that Hk(p) < 0 for | as(k- 1)/2. Thus it suffices 
to show 

Hk(,u) < 0 for as(k -1)/2 < lit| < ask!2. (26) 

Consider the decomposition 

Hk(p) =Hk-2(AP) + (1 - r)rk l[Gk(_ I () + rGk(,u)] (27) 

For as(k -1)/2 < I I < ask/2, 

k-2 k-2 

Hk - AM) = (1 -r) E r'Gi (t) <B( I - r)r E (rs) i/S(k -2) 

i=O i=O 

= 6(l }-r)r ((r)k -) 
I 

< e(I 1-r)rk- lrl < 2?( 1 -r)r k- 1 
(28) ((rs)klr - 1) rsI 

where the first inequality above follows because for ji > as(k - 1)/2 > cs(k - 2)12, 

Gi (p) < ersi-(k2) for i =0. k-2 (29) 

which in turn follows from (20) and (24). Since Gk I (u) < B, and Gk(u) =-A for 

,lI < ask12, it follows using ( 19) that, 

( 1-r)rk-l[Gk (,L) + rGk(P)] ?<-28(1 -r)rkl 
- for ItI ask12 (30) 

Combining (27), (28) and (30) yields (26). D 

Theorem 1 
For r and s obtained by construction (15)-(21), under discrete Fv with density 

pv(s') = (1-r)r', for i = 0, 1, . . ., (31) 

6v dominates 6MLE with respect to the unconditional normalized risk RN(6, P) = 

EFvRN(b, P,u V) in (6). 

? Board of the Foundation of the Scandinavian Journal of Statistics 1996. 
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Proof. Because s > 1, it follows from lemma 2 that for all ju, the sequence Hk(C) is 
eventually monotone decreasing. Further, once it starts decreasing, it starts out less than 0. 
Thus for all ju, limk,. Hku) < 0 which implies R(b V, t) < l( _R(bMLE, j)) O 

Theorem 2 
For r and s obtained by the construction (15) -(21), under continuous Fv with density 

fv(v) = (a - 1)v'I[V> I, (32) 

where 1 < oc <1 - (ln (1 - r)/ln s), 6v dominates 6MLE with respect to the unconditional 
normalized risk RN(, Pt) = EFVRN(, /1, V) in (6). 

Proof. Let W be a random variable with density proportional to w4 -I[1 < w < s] Pick r such 

that a < -(ln (1 -r)/ln s). Let V, pv in (14) with parameters r and s. Let V2= W VI 
which then has density fv in (32). Then under FV2 

RN(, /1) EFV2RN(, A, V2) = EFWEFVl [RN(, /1, W Vl) W1 

= EFwEFV,[RN(b, P/W, VIW) IWp < 1 (33) 

because EFVI RN(, ,', "VI) < 1 for all ,' by theorem 1. [ 

Theorem 3 
For r and s obtained by the construction (15)-(21), under discrete Fv with density 

( r)(ri Ms) I ~~for i=0,1,.. (34) 

and under continuous Fv with density 

fv(v) = cv -(oc+ 1)I[v > 1] , (35) 

where 1 < c <1 - (ln (1 - r)/ln s), bv dominates 6 MLE with respect to the unconditional risk 
R(6, /i) = EFVR(b, ,, V) in (3) 

Proof. Apply lemma 1 to theorems 1 and 2. O 

More generally, it follows immediately from lemma 1 that 6v may dominate 6MLE with 
respect to risks of the form Rg(b, i) =EFvg(V)R(6, ji, V) (for g satisfying certain regular- 
ity conditions). Note that such cases include the estimation of P under bounded loss 
functions such as truncated squared-error loss. 

Finally, we conclude with a graph which displays how the normalized risk RN(V, ki) is 
obtained from the conditional risk RN(OV P, V) under the continuous distribution Fv in 

(32). This graph is based on the re-expression of the unconditional risk under this Fv as 

RN(6v, j) = RN(V P, V) dFV(V) = f RN(4V, 95, w11(1 -W)) dW (36) 

which follows from the fact that for W - Uniform [0, 1], W'I('- 0 '-fv(v) = (a - 1)v-I[v J> ] 

in (32). Figure 4 displays the surface and contour plot of RN(6V, Y, w (I-a)) = 

RN(6V,I wl12(a- 1), 1) when a = 1.39 (< 1-(ln (1 -r)/ln s) for r = 0.6 and s = 10) over the 
range -20 < , < 20 and 0 < w < 1. This graph shows how quickly the region of improve- 
ment is moved out towards (- oo In). This region would move out even more rapidly for 
heavier tailed fv obtained by a closer to 1. 
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RN 0. 

wA 

Fig. 4. Surface and contour plot of RNQWv, PI Wl/O -0) when oc = 1.39. 
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