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. Then if p < 5 we show

i
g Xis

variables with E(X. 13

)2

2 -1
and S~ = (E(Ni-l)) z(xij—xi_
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where qé?L denotes the ﬁpper ath quantile of  the Sﬁudentized'
range distribution. This validates the use of Kramer's multiple
comparison procedure (proposed in Kramer, C.Y. (1956). Extension
of multiple range tests ﬁo group means with unequal numbers of
replications. Biometrics 12, 307-310) when p §:5' (The result
for p =3 was previously proven in Kurtz, T.E. (1956). An exten-
.8ion of a multiple comparison procedure. Doctoral thesis,

Princeton University.)



1. 'Introduction

Kramer (1956, 1957) proposed the following multiple compari-
son procedure for a one-way analysis of variance with unequal

sample sizes.

Let xiJ., i =1,0ee,p3 J = 1,...,1§i (Ni 2 1) Dbe independent
normal varﬁ?bles with E(X1 ) =y Var X5 = o®. As usual let
X, =nN;% £' X, and §° = v_li(X.,—X. }2. where vy = N-p

g = By 501 AJ = % il T ;

= {ENi)—p 2_1. Kramer's procedure produces the set of simultaneous

confidence statements

(12) | (gmg)= (g, x50 € sOig g h2le) 2t/

-

where q(?l is the upper ath quantile of the Studentized range
distribution (see e.g. Miller (1966), p.37-47): The conjecﬁure,
on which Kramer's proposal is based is that the overall error rate
of (1) as a. A precise statement of_tﬂis conjecture is aé
follows:

Conjecture 1: ILet p be given. 'Then for any configuration

N.’ i:l,.'.’p

(1.2) Pr(](Xi.—Xj.)— ] > S(N kN )1/2 (a) v/21/2 for some i # j’

'é Q.
(By the definition of qI()aL equality is achieved in (1.2) when
3
= N/p.)

The validity of Conjecture 1 would show, in other words,

Ny

that Kramer's procedure is conservative. This conjecture is
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trivial for p = 2 and was verified for p =3 in Kurtz (1956).
However its validity for p 2.h has not previously been vali- |
- dated. As pointed out in Miller (1966), (See, e.g., p.87.)
this procedure can only bé used with skepticism unless Conjecture
1 is validated. Many related references are listed in Miller
(1977) and some related issues have recently been discussed in
Gabriel (1978) and Genizi and Hochberg (1978).

Recently Dunnett (1979) has performed a céreful,Monte Carlo
study which indicates - ﬁerhaps somewhat surprisingly - that
Conjecture 1 may be valid for all values of p. Dunnett's study
_ provides strong evidence, and may suffice to Jjustify the use of
Kramer's procedure in various applicationsj— particularly when
P 1is not large. However a Monte Carlo study is not well suited
to demonstrating the mathematical validity of Conjecture 1 for
several reasons; nof least because the Monte Carlo calculations
must be performed at all configurations of Neo 1 =1,.005p,

-and this is increasingly impossible to‘do as p gets large.

Motivated by Dunnett's study we have éttempted to find a
proof of Conjecture 1 for values of p 2_4. We have had only
limited success. This paper contains a proof of

Theorem 1: Conjecture 1 is valid for p =4 and for p =5
(as well as p = 3). |
‘ The fact that Theorem 1 is limited to p { 5 has not made
us skeptical of the validity of Conjecture 1 for larger values
of p. Rather it has convinced us only that the problem is
mathematically very complex to solve - at least via the methods

which we have found to be. applicable and have used here. These -
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methods are entirely elementary and it could be that the problem '
will prove more tractable via some more sophisticéted.approach.
Still, there is some hope that the methods used hére could be
extendedzto yield a general proof of Conjecture 1 I(if that
conjecture 1is really valid for all p).J It would be necessary
to enunciate a suitable induction hypothesis; and this we have
been unable to do here., Some further thoughts on this issue are
contained in a postscript in the Appendix.

The validity of Conjecture 1 is equivalent to the validity
of the following proposition concerning a family Zi’ i =1,.ues5Ds
of standard (mean zero, variance 1) normal random variables.

For p = (pl""’pp) with p; > 0 define

2. avlle
PK(P) = Pr{lpizi“Pijl 2 k(Pj_"'P_J-) / for

some 1 # Jjl.

Proposition 1: Let p be given. Then for any k > O

(1.3) sup{Py (p)ip = (pys--espy) with py > 0]

i

Pf{]zi—zj[ > 222 for soime 1 £ 3)

= Pk(%).

(See the appendix for a proof that Proposition 1 implies Conjecture
‘1. 'The reverse implication is of no importance here, and its

proof_is left to the reader.)
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2. Reduction to a local maxima problem.

Qur proof of the validity of Pfoposition 1 involves showing
for the given dimension, p, that the probability on the left of
(1.3) is a continuously differentiable function of pl= (pl,...,pp)
which has an inflection point if and only if R It is
then easy to show that this inflection point is a local énd global
maxiﬁum, and hence Proposition 1 (and Conjecture 1) is valid for

this value of p.

Let e; denote the ith unit vector in RP. 1Iet

~ 2 2,1/2 _ D
ﬁij(p) = (pye; - pjej)/(pi + pj) . _Iet Z = (Zl,...,Zp) e R® and
use the symbols a-B for the ordinary dot product on R® and
1/2
lall = (a-a) / . For any collection B = [ﬁij: ﬁij e RP, 1 € i< j<p]
define '
(2.1) nk(ﬁ) = Pr {]ﬁij-zl > k” ﬁin .for gsome i < 3l

Note that P (p) = nk(gfp)) where P (p) is defined 'in Proposition 1.
When the.value of X 1is fixed in advance, as it will be in the

. following, we write P(p) in place of Pk(p), ete. It is easy to
check that n(p) and PB(p) are continuously differentiable to all

orders.
Then, 5
' P=lan(p : Pip
(2.2) 35 m(p(e)) =z BRBL - (opy yoer, )(- SiR g
P 1=1 73D P i (pi+ep)
p-1 i
where ::izl Ti(p) (definition)
RUBY) < xim st (n(p + 8 ef _(m) - 1(p))
°Pip A0 ' P
x PRI A
with (ea (m)).. =e_  if i =1, j=9p, and = O otherwise.
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We thus intend to prove

Proposition 2: Let p be given. Let Pp Z py for all
o F 4 p. Then

(2.3) r;(p) €O

for a1l 1 < p. Equality occurs (if and) only if p, = pﬁ.
According to the' introductory remarks of this section (in-

éluding (2.2) the validity of Proposition 2 wiil imply the validity

of Proposition 1 (and of'Conjecture 1). Note, it is essential in

Proposition 2 that Pp Z pi. for i p; otherwise (2;3) could

~be false. In more concrete terms Proposition 2 implies that m(B(p))

can always bé increased by slightly decreaéing the largest value

of p, unless all_ ps; are equal. (This implication is valid even

if several (but'not all) coordinates of p all assume- the value

max p..)
i i
The next step is to give a more useful expression for
Ti(p). To this end, assume Pp Z:pi for .i { P
Without loss of generality fix the particular value of the index

i which appears on the left of (2.3) at i = p-1l. Define

Vi =y Z:l. i=1,...,p-2
' o) 1/2

| = & .z +
Vo1={ppoy &y * Py ey a)e 2/pp + Py y)

B ) 2 2 .1/
Vp = (Ppo1®po17Ppep) -2/ (pg + ppy ) :

- ﬁp"l.'rp(p) Z

¥*
LA

Note that Vi aré independent normal variables; and that Vp and

Vp*1 have variance one. Now,
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(2.4)  (B™(ps8))p g, 5% = By o+ Bey) 2 =V, +

P-1,p

| | a
8 Ppa1 Vp—l/(PE - p§_1) N Op(a)’

(A more detailed presentation of (2.4)-as well as many of the

following expressions-appears in the appendix.). Then

/

(2.5)  1,_1(p) = im 7% [Pr(max {|6];(p,8) 217 ) X)

# Pr(max {lﬁij(p)'zlj 2 k)]

= 2¢(k) E((Pp-1 vp"l/(pe 2 )
: p

(Pr(8 (v,_y)) - Pr(8 (v,

where ¢ denotes the standard normal density function, a%::max(a,o),

and
P

S {v)] = {(Vl""’vp—E): max[T ﬁij'zl
(j-:j) ?! (p—l,p)‘} < k I Vp = K, V‘p—l =_V)'

After some algebraic calculations it is possible to write

S(v) = s(PpPp-1 Y (o2 |D;v__l)l/’?) where
{2.6) s(a) = {(vl,...,vp_g): lvi,~ vjl
< k(p§ } p§)1/2 » a+ey -dy < vy
& ad c; +d4;} with
ey = (e/2) (21 16277~ (2 4 0B)™?
> (pg - pg_l)/(p§+p§_l)l/?J

and
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1/2
a; = (k/2)((pZ + pf)

1/2
2 2

- (pg + pg_l)l/e)f .
Note that sinc; Pp 2 Ppy | ‘

(21) ey 2 (/2 ((p2 4 $B
o (Pg % pf).l/2'+ (pp - pp_l))_>__ 0

1/2 K
-y 1is a decreasing function of Yy 2 0}

(because (y2 + Pg)
Note also that c; =0 1f and only s % 3 Pp = Pp-1- Also note that
c; end d; are increasing functions of p; for fixed Pp* Pp-1-
See Figure 2.1 for a picture of S(t a) when p = 4. [Insert Figure
2.1 here.] | '

The preceding calculations motivate the articulation of

Proposition 3: Let p be given. Let pp> Pyl and

ppri,i=1,...', P - 2. Iet a ) O. Then

(2.8) Pr(s(a)) < Pr(s(-a)).

It follows by continuity that Pr(s(a))  Pr(s(-a)) when
pp = pp—l’ (In fact, later computations show thét equality holds
under this condition.)

According to the calculations preceding this proposition the

truth of Proposition 3 for the given p implies the truth of

Proposition 2, and consequently of Conjecture 1,' for this value of. p.
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3. Proof of Proposition 3 (and Conjecture 1) for p = 3.

|
Jo - . | :
When p =3 then S(a) = {vy: a+ ¢y - dg < vl'< a+cqy+ dgle

Now, 1let 'wl be a normal variable with mean O and{variance
pg > 0. Then 7(b) = Pr{b - dy < Wy ) +.d;} 1is a symmetric

strictly unimodel function. Hence

{3.1) Pr(s(-a)) = m(-a + cl)

> m(a + c;) = Pr(s(a)).

This proves Proposition 3 and hence Conjecture.l for p = 3. [Con-
Jecture 1 for p =3 was first proved by Kurtz (1956). His proof

was somewhat different, and did not involve intermediate steps like
Propositions 1-3.]

The inequality (3.1) can be thought of as an instance of the
following standard lemma, which we shall later use again.

Lemma 3.1: TLet W be a real valued normal random variable
with mean ¢, variance 02. Let o< B, with

(¢ + B)/22 0 (£ 0, respectively) If 82 0 (8 < 0) then-

(3.2) Pro((a,p)) 2 Pr_.((a,p)) = Pr ((-B,-a))

with equality if and only if (a + B)/2 =0 or ¢ = O.

(In {3.1) @@= cy -dy, B=cqy+dy, 8 =2, and

Pr(s(-a)) = Pro((a,p)) 2 Pr_c((a,p)) = Pr(s(a)).)



L, Two _Lemmas:

The results of this section will.be used in the next two sections
in the proof of Conjecture 1 for p = 4,5. The first of these lemmas
is a generalization of Lemma 3.1 to the case of highér'dimension, as
well as to a more general type of region.

The seCond lemma is somewhat more specialized (and easier to

~prove) and will be used several timés in Section 6.

Temma 4.1: Tet Wl,f..,wq be indépehdent normal random vari-

ables with means 8, £ 0s 1ot s s B s Y= Y,.0059 satisty

= &
a‘i+p3igo, ai< By- Let kiJ.}O for 1¢{ 1< j< 4, and define

(4.1) R = {w: a;-a¢ W By T Byeees [wi—wjl <'kij=1 (i< i< a}

+ - . i =l 3 — . -~ .
(4.2) R = {w: -B; +al W (-0 +a, 1i=1...,q lwi wj] < iy,
1 1< 3¢ gl
Then
- +
Pre(R Yo Pre(R )
. with equality if and only if 6 =0 or R = R .

Proof: For the case q =1 this lemma is equivalent to Lemma

3.1. Now, suppose the Lemma is true in dimension q = 1,...,Q - 1.
ILet g = Q.
Suppose Bj‘g O Tfor some coordinate Jj = 1,...,Q. For sim-

&

plicity suppose J = Q so that By { O. Then K = U(R (+0) x (2w))

_8,
where we( "Q GQ)

R (-w)

1l
[ i
oy
}_\:'H
=
£
]_P
S

(Wyseoo ,wQ_l,-w) € R}

1l
~
—

=
£

. ’WQ—:I.) : -max(ai, —w-Ril)

< vy < min(ﬁi,—w+kli)},
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and K (w) = - R (-w). Note that

Pry(R™(-w)) 2 Pry(R (+v))

by the induction hypothesis. Hence

(5.3)_ Pra(R") EB(Pre(R"(-w)]wQ = -w))
~w) )

> Ee(Prg(R+(+w)[WQ
Y Eg(Pry(R(w) |y = w)) = Pry(x")

Il

(The second inequality utilizes the fact that BQ g 0, w » 0, and
the density of WQ is symmetric and unimodal.) At least one of the

inequalities in (4.3) is strict unless 0.

§ =
In general the pair of sets R - R’ and R - R can be
broken up into disjoint pileces - antisymmetrically paired - such
that each palr of pieces satisfies the conditions of the lemma and
of the preceding paragraph. This is illustrated in Figure 4.1. Ex-
plicitly, let G < {(1,...,Q)} with Q, # ¢ and let Qs = { (A}
- Q- Iet

R-(ai) = {w: WeR, a; -a

% wi  a-g; for i ﬁa,

a-B; < Wy £ B;-a for 1 e’aé}.

and define R%(al) = R-(ai) then RS - ﬁ; =‘a igRi(al) (except

for a set of measure zero) and PrB(R*(ai)) 2 Prt(R+Cal)) with strict

inequality unless Ri(al) =@ or 6 =0. The truth of the lemma

for g = Q follows directly. This completes the proof of the lemnma.
Lemma 4.2: Let Wys W2 be'independent normal random variables

with mean 64, 8,. Let R(a) be a set of the form



I = B(ii.2))s I = Blia) 1 = 2512}

vt = ’5(9); ® = rfurrturrrfurv

Fig. 4.1



(4.4) R(a) = {(w,w,): o +a( w, { By + 2
052< W2 = 'le < 52}

where ai'< Bi» 1 =1,2, vy > 0, ay + By 2 0 a, + B, + y(a1+ﬁl) 2 0.
Then

Pro(R(-2) ) Pry(R(+a))

whenever Bi < 0, Be‘g 0; and strict inequality holds unless

oy + ﬁi = 0; 1 =131,2, and 0§ = Q. |
Proof: The sets R(+a) are illustrated in Figure L.2.

Note that for any w > O

Pre(ae'l"{((al_!_ﬁl)/e'w) < Wg

< By + v((ag+py)/2-0))

2 Pro(asty((aq+Bq) /2+w) < W,

By + v((ag+By) /2+0)
by Lemma 3.1 since o + By + y(as+B,) 2 0. Hence
(4.5) ~ Pry(R(-a)|wWy = (a;+By)/2-u)

2 Pro(R(+a)[Wy = (a;+p,)/2+w)

for any w ) O; and strict inequality holds unless a, + B, + y(al+ﬁl}=f
and 6, = O.

2
Note that

(4.6) R(za) - R(+a) = R(ia) n [(wl,w ) = (otB)/2 = w

: Wl
with | (ay-B;)/2+a] < w  (By-op)/2+a)}

Since the density of W, is symmetric and unimodal about 8, !

it follows from (4.5) and (4.6) that for 8¢ 0
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Pr(R(-a) - R(+a)) 3 Pry(R(+a) - R(-a));

with strict inequality unless a; + Bi =0, 1=1,2 and 6 = O.
This completes the proof of the lemma.
We remark that the preceding lemma could be generalized to

hold for sets of the form
R(a) = {(le"':wq).: 0 + a < Wl< Bl + ay
N ,

(wg,..i,wq) € R (wl)}

so long as the analog of (4.5) holds - that is, so long as
N _

(4.7) Pr,(H (wp) Wy =wy = (0y+8,)/2-w)

’ * ;

b Pre(R (wl)lwl = Wy = (a;+B)/2+w)

for all w » O.
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5. Proof of Proposition 3 (and Conjecture 1) for p = L.
|

Without loss of generality assume Py 2 Py 'thrbughout this
section; as well p =4 and the remaining éssumptiohs of Propo-
sition 3.

The proof is in two parts. The firsf part concerns the sets

Sl(a) = {(vl’vg) € S(a):
- k(p5+pR) 2 + 2(cy-cy) vy - v, ¢ k(pPHD) M2

and the second part concerns the sets

Sg(a) = S(a) - 5,(a).
Figure 5.1 illustrates these two sets. [Insert Figure 5.1 near here. ]

It should be clear that the sets Sl(a) and Sl(-a) are anti-

symmetric about the Eoint v = c¢. Thus
(5.1) | (vi,v,) e 8;(xa) (>
2¢c - (vl,ve) g Sl(¥a)
In fact, S_.L 'is the maximal set having this property. Thus
(5.2) . (vl,vg) € S(xa), 2¢c - (vl,ve) e S(+a)
| =) (vi,vg) € Sl(ia).

At this stage we have found it notationally and conceptually

convenient to introduce independent normal random variables wl,w2

with means 0.,8 and variances Ff,pg. Let

L% "2
2la) = {(wl,wg): W-c = (wl—cl,we—ce) e S(a)?

= {(w,w,): ]wl—we-(cl—cg)l

2. 2+1/2 . '
< k(pl+pg) g 3 |w,-a] <€ d;, 1 = 1,2}
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and let

Ti(a) = {(wl,wg): W -C € Si(a)], 1w 1.9,
Note that
(5.3) Pro__ (W ¢ T(a)) = Pr(v e 5(a))

and similarly for T;(a) and §,(a), i = 1,2

-The first part of the proof of Proposition 3 is containea in
the following lemma. :

Lemme 5.1: If 6; { O, 1 =1,2, then Pry(T,(-a)) Z'Pre(Tl(a)),
with equality if and oﬁly if 6 = 0. Consequently Pr(s,(-a)) >
Pr(s,(a)).

Proof: The second sentence of the lemma follows directly from

the first, (5.3), and (2.7). To validate the first, note that

Tl(ia) = {(wl,wg): —@i + ad Wy

4y # a, i=1,2 ]wl-we
2. 2vlf2 '
& ol Sep2pM R0 fere )y,

Hence Tl(ia) are sets of the form R of Lemma 4.1. Temma 5.1
now follows from Lemma 4.1.
The reader may note that the preceding lemma does not use many

of the detailed formula defining Sl(ia) (and, consequently, T.(%a)).

| _ 1 (
It uses primarily the antisymmetry, the fact that ¢y > 0, 1 =1,2,

- and the independence and unimodality of the distributions of Vi,Vé

(and W The next lemma, which deals with the sets 5, (za)

17 2)'
requires much more precise information for its wvalidity.
Lemma 5. 2; Pr(SQ(—a)) 2 Pr(Se(a)). (It can be shown that

eduality holds only if Se(ia) = @; which occurs if and only if



P1=Pp (so that ¢, = <5)s - oOr P3 < po--see the pgrt of the
Appendj_x conrcalllg Figure 2.1) . _ :

2£00f: It ¥y = V) - V,, Y, = Vil 4 Vb2 |Note that
Yl’ YEI are independent normal random variables eachihaving mean

0. ILet .

Up(xa) = {(yy5,): (vylyyy,), v2(¥1:5,)) € 5, (2a)
. 2 2
Here, of course, l(yl;yg) (Plyl+plpﬁy2)/(9 o) and v,(yy,v,)
- (plpgyg 2:>rl)/(p +p2)
Now, U2 can be written as -
] 2,02)1/2
(5.4) v, (za) = {(yy,v5): max(-a, mdytey ey, ~k(PTH D) / )
2 2
< ¥y < k(p ) + 2(c -c2) and
m(yy) = ad y,< nylyy) = al
See Figure 5.2. It is calculated in the appendix that
(5.5) | (ny (¥) + “2(Y1)) > 0
for all values, yl, satisfying the inequality in the definition
(5.4). It follows from (5.5) and Lemma 3.1 that
Pr(ﬂl(yl) - 8.< Y2 < ng(yl) - a‘)
> Pr(ny(v;) + a< ¥, < nylyy) + a)
for all values of ¥y, @ppearing in (5.4). Consequently
Pr(UQ(—a)) >‘Pr(U2(a)) (unless Uy(xa) = §), and so Pr(s,(-a)) >
: Pr(Sg(a)) (unless Sg(ia) = #). This concludes the proof of the

lemma.

Observe that Lemmas 5.1 and 5.2, taken together, prove that



L is the line segment(s) {(yl,yg)i y; =D (fixed) 3 N (Ug(i a))
I= (D, (D)-a), II = (D,ny(D)-a),
IIT = (D, nl(D)-!-a), IV = (D,ne(D)-i—a)

(Note that the intersection of I with the Vo axlis divides

L Dbelow its midpoint. This reflects (5.5).)

Fig. 5.2
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Proposition 3 is valid when p = 4 since Pr(s(za)) = Pr(Sl(ia)) +
Pr(sS,(+a)). This completes the proof.of Proposition 3 .(and hence

of Conjecture 1) for the case p = 4.
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6. Proof of Proposition 3 (and Conjecture 1) for p = 5.

This proof has many elements of the proof of the preceding
section for p = 4, but it also contains several steps which have
no analog there. Without loss of generality.assume Py Z Po ; P3
throughout this section; as well as p = 5 and the remaining
assumptions of Proposition 3.

Define Wi, i=1,2,3, to be independent‘ﬂormal random

variables with means 6; and variances pi. Let

T(a) = {w eIR3: w.- c e s(a)}

Tl(a) = {w ¢ R3: w e T(a)
2 2, 1/2 o
Iwi = le < k(pi + pj) S (ci— cj) for 1L 1¥/g < 3]
Sl(a) = v e R3: v + ¢ e Tl(a)}
82(8') = S(a)—' Sl( a).
Again, Pr. _ _(T;(a)) = Pr(s,(a)); and the first half of the

proof of Proposition 3 is to show
Lemma 6.1: If gy < 03 [ 1698, pl2l Bhen PrB(Tl(—a)) 2

PrB(Tl(a)), with equality if and only if @ = 0. Consequently
Pr(s,(-a)) > pPr(s,(a)).

' Proof: The second sentence of the lemma follows from the
. first, as in the proof of Lemma 4.1. |

| Also as in the proof ﬁf Lemma 4.1, the sets Tl(ta) are of
the form R't of Lemma 4.1. Lemma 6.1 then follows directly from

Lemma U.1.

The second. part of the proof of Proposition 3 is to show
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Lemma, 6. 2: Pr(Sa(—a)) Z Pr(Se(a)). (Again it can be shown

that equality occurs if and only if Sg(ta) =g.) |

(ta) are each broken into three disjoint

Proof: The sets 82

subsets. These are
Qz(ta) = {v ¢ Sz(ta):
VpmVg 2 (de-d3) 4 (02-03)}

Qg1)(8) = v & S (48):
V2—V3 < (de-'d?)) + (0.2“03)’
vy=¥s $ = (84-05) + (&y-¢,5)}
Q3(2)[ia) = {Vv e Se(ta):
VoVg < (dg—d3) + (c2—c3),

V-V, > -(dl~d2) - (cl"ce)}
For the remainder of this proof we assume pp-l > p3; for otherwise

S,(+a) = ¢, and the lemma is trivially true. (See the appendix
concerning Figure 2.1 to verify this assertion.)

(Geometrically these three sets can be visualized as follows:

the sets S ta) are composed of line segments of the form

o
{v+Dbl: b eR} NS (+ta) for various v e Ry Q (+a) consists

of those line segments which exit 82(+a) at Vv, =d,+ ¢, t a.

Q3(i) consists of those line segments which exit Sg(ta) at

vy = d3 teytoa and enter at v, = -d, + ¢c; +a, 1= 1,2. (Thus,

1
Q, could, more properly be labelled Qg(l).))
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Consider the sets Q2(+a) Since Z 0, it must be

5. 1/2 '3
that elther v, - v, § -k( pl + p2) + 2(0 -c

1/2
V] = Vp =V - Vg - (v2 - V3) < *k(Pi + 93) + 2(cy - c3)

5) or.

-((a, - d3) + (e, - 03)). It is shown in the appendix that the
latter lower bound is larger. It follows that v € Qg(fa)' only if

vl - v2'= 612 satisfies

(6.1) max(—(dl + d2) +-(c1 & 02)’

1/2 A 1/2

+2(cl - 03) = (d2 - d3) o (02 - c3).

Furthermore, it is shown in the appendix that (6.1) together with

- 1/
2 2
1/2
< min (v2 + 8y, + K(pi £2 Pg) .

- (d2 - ds) - (02 - 03))
and |

(6.3) 3. +iel &l a v + &

q L = v, + 5;2 < dy¥)e

1 2 2 g e s

are necessary and sufficient for v ¢ Qe(ta).

As in the proof of Lemma 5.2 define Yl = Vl - V2 and

_ 2 ik : e : I
Y, = Vl/pl + VE/pg . For fixed, given, Y; = &, satisfying {6.1)

the regions Qg(fa) can be written because of (6.2) and (6.3) in

terms of Yg, V3 as
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(6.4)  Q+a) N [¥; = 6,,)

= {(yg v3): m(8,,) +a <y,
Cny (81p) 42, Ma(815) + mg vy
Cvg < Me1,) + M 3,)
whgre 6,, satisfies (6.1) and ﬂl, N, are as defined in (5.4)

and ﬂ3,'ﬂu, ﬂ5 ‘are described more explicitly in the appendix.

It is verified there that ﬂ5 > 0,

(6.5) M(81,) + M (615) 2 0,

and

(6.6) (n3(85) + my (875)) + ng(ny(85,) + n(81,))
y o .

for all &,, satisfying (6.1). It follows from Lemma 4.2 that

Er(Qe(-a)[Yl = 612) 2 Pr(Qe(a)lY:L - 612)' and hence
(6.7) Pr(Q,(-2a)) 2 Pr(qy(a))

The sets Q3(i) are handled rather similarly to Qz. For

v € Q3(1)(ta) the difference v

1 - V3 = 613 satisfies
. 1/2
max (--(dl + d3) + (Cl - 03)s -k(Pg + Pg) 4 )
1/2
(6.8) < 613 < —k(pg + pg) = (dl = de) - (cl - c2)4~2(cl-—03).

See the appendix. It is also verified there that v e Q (+a)

if and only if (6.8) 1is satisfied along with
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and
(6.15) vy - (4 - d,) + (cq - c,)
Cvp vy e x(p2 4 622
and
(6.16) -d, + ¢, t 2 < Vo = Vyt b,g <-d3 t eyt b,yg t a.

As in the previous two cases Lemma 4.2 may be applied to yield
(6-17) PP(Q3(2)(—3)) > PT(Q3(2)(a))-

Combining (6.7), (6.13) and (6.17) yields the desired result,

that

IPr(Sg(ua)) 2 Pr(s.(+a)).

o
This completes the proof of Lemma 6. 2.
Lemma 6.1 and 6.2 combined show that Conjecture 1 is valid

for the case p = 5. This completes the proof of Theorem 1.



(6.9) vy + (dl - d.
< v
+ .63 + k(p%
and
(6.10) -d; + ¢y +a
Hencé if we define Y3

' Ehe regions Q3(l}(ta)

o)

2] -

ey = o) < v,

vl = v3 + 613 ( d3 + c3 + 613 T a.

| . 2 0
vy - V3 and Y) = Vl/pl - V3/p3 then

can be written in terms of the values of

Y, V, as (except for a set of measure zero)

Y3, 2 z

(6.8),

Q3(1)(fa) = [(yg,yM;V2)= ¥g = 613, 613 satisfies
gl 813) + Myg vy < vp < nglisgg) + Mg w3

It is checked in the appendix that nlO > o,

(6:11) el 813) + (6y3) 2 O
and
(6.22)  Mg(8y3) + n(615) + Myo(Meloqq) + moy5)) 2 o.

It follows from Lemﬁa 4.2 that

For v e Q3(2)(ta) the defining inequalities are

o /2
(6.14) max(-k(pg -+ p3) s ~(d2 + d3) +(c2 -, c3)
142 ;
< 523 = 32 - V3 < —k(pg 4 pg) b 2(02 - 03)
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S § .
r,-1(p) —iigl& (Pr( [By.q, plpst)-2]

2%, maxl]] [ (p,8)-2]:(5,9) # (p-Lp)] < X)

/

+Pr(max{[;3;’j(p,a)-zl:(i,J) # (p-1,p)} 2 k)

-Pr([B,_y p(p)-2] 2 X,
max{|B; s(p)-Z|:(1,3) # (p-1,)} < k)
-Pr(max{|B; ;(p)-2]:(1,3) # (»-1,)] 2 X1

= 2 lim A™T[Pr(B

. k
P p—-l,p(p’b‘) Z g 3

Bp-1,p(p) 2 < k5 maxl]y;(p) -2l :(1,3) #(p-1,0) }<¥)

-Pr(B, 3 o(ps2) < KBy 1 ()2
‘ Z_ kima}{{lﬁ'ij(p)'zl:(i:j) #(p-1,p)} < k)]

. -1 . e 2 :
m 2% A E(Pr(k-
Ai_r(rjl [E(Px( APP_lvp_l/(Pp+Pp_l) ‘g Vp < k,

mex{]B, 5 (p) -2l (£,9) £ (p-L,0) }<k[V,_y =¥, 1))

~E(Pr(k-sp,_y v 1/ (p55_1) >V, 3 K,

max{[g; ;(p)-2]:(1,3) #(p-1,p) }< k[ V,_q = p-1))1]
= 29(k) [E((p,_y V,_y/ (o2 1))*

- ‘Pr(maX[]ﬁij(P)'zli(i,J’)#(P-LP)]



Appendix (Proofs, computations, and a conjecture)
Proposition 1 implies Conjecture 1: Let p§ = v7t.  Then

i

- (&) ,s1/2
= 2 -

Tet k sqp,v/

Pizi has the same distribution as Xi--pi .

Then since S is independent of {Xi,i = J;eens D} (&0 OF
{Zi} as well) (1.3) yields '

Pf[[(x.;-gj.)-(pi:ujll'z s(N£}+NJ y1/2 (av/el/e
for some i %-j}_ g:Pr{IZi—ZJI 2_sqé?L for some i £ j} =

by the definition of qéai . I
3

Calculations for (2.4):

- ; 2, .2 1/2
By, plPtdey) 2 = Hpra) 2oty 12, 1)/ ((p+a) Srop 5)

- (ppzp-irpp_lzp_,l-azp)(;-app/( +p2_)+0(8))/(p2ep2 1)/

)1/2

Lo 2
V_-AZ 3 s
ok /(pp pp 1 éppvﬁ/(pp+pp_l)+op(é)

s 2LT
= Vb+APp-1Vb~1/(Pp+Pp~1)'Op(&)’

since

1/2
A A A ST U g
(A1) - |

. ] 2 1/2
Zp (pp—lvb—l+ppvﬁ)/(p +Pp 1)

Calculation for (2.5): Continuing after the first step of

(2.5), we get
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IV, =1V, ) +E((p, Vo1 /(p24p2 1))
Prnax{]8;;(p)-2[: (1,3) #(p-1,0) }<k|V, =k, v _1))]

= 20(X)E((py_y ¥, 1/ (pgtop 1 )* (R (v,_1) -8 (-v,_1)))

where ab = max(a,0), a~ = min(a,0).

,

- Computations for (2.6): 1In view of (Al),

S(v) = g P ¢sVp_p)* [vy=v. l(:k(pl+pJ 1/2 [ppz +v, |
< }‘(Pp'l'p )1/2 IPP 1% p-1 tv, ,<k(Pp 1 )1/2]

= v e vy )il vy, I<k(pl*-p3)l/2

1/2

| ~kp2 /(pp Pp- 1)1/2"'pppp 1 /(pP Pp- i) 4l

< (pp+p1 TN kg, 1/(p§ ; 1)1/2

~PpPpe 1V7(pp+pp l)l/ Vs l<:k(pp 1t )l/?J

= {(Vl, -..,V‘p_g): ,vi-vj, < k(p]2-+p§)l/2

atkp S/ (p2rp2 1)1/ 2k(p24p2) /2 ¢ v,

2,2 )1/2 k(2

< a- kpp 1/ (ppteg_y )1/2}

where a = pppp—lv/(p§+p§~l)l/2 since



D m

keﬁ_ | 1/2 k9§ i 1)2
(p2rpZ )L@ k@ ) b s (p2pE )Hh_k@pl+ =
PpPp-1 Pp*Pp-1

2,1/2
(because (pp+pP l)l/ (pp 1P 2 1/2 > ( i) / , and
2 2
kp kp
_ p-1 1/2 D 1./9

( 2_1_‘2 )l/2+k(pp l+ ) < ( 2 -2 )lf2+k(pp{-pl) °
Pp™Pp-1 pp p-1

Defining c;, d; as in (2.6) now yields the desired expression.

Which vertices are in $S(za)? (See Figure 2.1):

The vertex Pi = (a+dl+cl,a+d2+c2). Now

2c1/2 ~( +02)1/2)

(a2) 0 ¢ (d+ey)-(dgre,) = k((pp 1+p3) pp 1P 5

S pTeD) M

Hence P, € §(a).

Similarly Py = (a-dj+ci,a-dytc,)  so that
B 2. .1/ eL 2.1/
0 2 (=dy+eq)-(~dyrey) = ~k((pg+p7) ™ - (pS+p5) ™ %)

2,-k(p§+p§)l/2 .

 Hence Pé € S(a).
The vertex P, = (a+dl+cl,a~d2+cg). Now,

)1/2 (p 2 2)1/2 (p " e )1/2)

(A3) 0 < dl+cl—(~d2+02) = ((pp 1HP] PptPo Byt

i k(Pe 2 1/2
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'if and only if p§_l g=p§ ‘'by application of the Cauchy-Schwartz
inequality. (We have assumed P 2;52') Hence P, € S(a) if
and only if p> ) ¢ p5. Similarly Py € S(a) if and only if
pp-1 < P1- | |

Verification of (5.5) in the proof of Lemma 5.2: According

. : 2 2 .
to Figure 5.2, ny(yy) = (-dj+c;)/py+(=dy+e -y;)/p5 and ny(yy)
= (d2+02+yl)/pl +(d te )/pe Hence, we_neéq to prove

() 0% m(yy)n(vy) = (1/p241/p2) (< rare re,) -y, (1/p2-1/62)

for all y, satisfying the inequality in (5.4). (The symbol £
denotes an inequality to be verified, etc.) Taking (5.4) into

account, (AH) will be valid if

2 2)1/2 Ho. 2

(45)  (x(pf+p} 17p)) (p5-p5) ¥ (p54p3) (a;-d5mcq-c,).

Since

2(cq-cp) (pZ-p2)~(eyte,) (p54p3) ¢ (cq=cp) (p2-p3)

g. (cl o (Pl+pg)

it suffices to verify

(46) k(p§$p§)l/2( pi-p5) > (p1+p2)(d ~d teq=c,)
k(pl+102 ((Pp 1"91)1/2 ( p 5 2)1/2)

1/2( 2 2)1/2

Py~ p3) = (p1te5

Hence it suffices to verify

Now, (pZtp2) (pytop) (Py=pp) > (p24p3) (py-py)-
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2, 2 _
(A7) (p1+p5) (p1=pp) 3 (pZ4pl)

)1/2 92)1/2)-

((pp 1+P7 -(pp 1t

Now .(mg-i-'pjg_)l/2 (m 2)1/2 is a decreasing function of m > O.
Hence (A7) is a valid inequality. This verifies (AL), and
consequently (5.5). |

Verification of (6.1): It is required to show

~k(pF4p5) 1 2r2(e)-e5) - (4,-a5)

~(cpmeq)- ¥ -k(pZ4p2) 1 %2(c —c ).

This is equivalent to

1/2 2y1/2

(a.8)  x(py+p2) Y2 3 k(pFp5) Y Pi(apma5) ~(cpmey)

- x(p? p3)1/2+k( g ?)1/2_k(p . D1 fo

ptP3) .

Since P3 g.pg ﬁ_Pl'g,Pp this last inequality is valid by
application of the Cauchy-Schwartz inequality.

Verification of (6.2) and (6.3): The conditions stated in

(6.2) and (6.3) are obviously necessary for v Qg(ia). One
- further defining condition for Qg(ia) is that V3 > -d3+c3.

But note that the lower bound already stated by (6.2) and (6.3) on

V3 is
(A.9) \E% vlnqle—k(p§+p§ 1/2 5 dl+cl+k(91+p3)l/2 Q(lecg)
+8y=dghe - 3-k(p§4p§)1/2 = k(p§+p§)l/2 k(pg+ 3)l/a
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-(dl-dg)—(cl—ce)-d3+c3

= k(P32_+P§)1/2"k(P )1/2 (Pp l l)

/2

+k(pp 1+p2) -d3+c3

2 —dgteg

by the Cauchy-Schwartz inequality since Pp-1 >.p3' It follows
that the conditions stated in (6.2) and (6.3) already imply the
condition vs ) -dztcg.  An enumeration of the conditions for
v e Qe(ia) now shows thaf (6.1)-(6.3) are sufficient for

v e Qe(ia).

Verification of (6.5): It follows from (6.3) as in (AL),

that

n1(612)+n2(612) = .(l/p%l/pg)-(—d +d ke +02) 612(-/p2—1/p1),

but here &,, is subject only to the upper bound in (6.1). Thus

it is required to verify

(A10) (Pjg_-Pg) (+k(p§+p§) l/e+d.2--c513+(<:2--c3)—2(cl—c:3))

2 (Pl+p2 dg"(cl'l'cg))“.

The left hand side is equal to

k(p3-p2) ((p503) ™ - (02102) M 24 (52 o 22 (b2 1+ 1>1/2
+(pp+p1) +E)

> x(pi- 02 (s, o) Pop )
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since (pl4p§)l/2 (pp+p3 l/%>pl and (Pp 1t 2)l/2_( +P§)l/e>92‘pl'

At the same time the right hand side of (A 10) satisfies
(pl+p2)(dl d2 (cl+02))

< (p24p2) (-, (cy- 2))

2 2)1/2 (

k(Pl+Pg)((P P 5

Consequently it suffices to- show
20 | Q¥
(A°ll) (Pl‘Pg)(Pg+a(Pl))
o (pl+p2)(a(pl)-a(p2))

alp) = (p2+p?) 172

+p This can be rewritten as

where pp'
(a12) oo pl(pg+a(p2))-2p§a(pl) b pg(pg4a(pg))

Note that the right side of this expression is independent of pf

whereas the left side satisfies
2
(A'13) “?—gy[91(924a(92) QPQG(PI)]
= (pstalp,))- pg/(p2 Syre
2 1/2
2 poll- pg/(pp+pl ) > o.

Thus the left side of (A.12) is increasing as a function of 'pf,

for fixed p,, Pp» @nd so reaches its maximum when P = Py (since

Assume p, = Py Then the left side of (A.11) becomes

(pi-pg)(p2+a(pl)) 2 (pp+pe)l/2( Pp=Po) (Pt (/2-1)p)

= (p 2+pg)1/p(pnpg(2 J”)+J”pp ps-pg)



Now since Po 2 Pos

pg(e‘ﬁ) +~/§pp

i

(p5(2-4/2) 2ip 0, (/2-1)+2p2) /2
2 (p5((2-/2) 24l (/3-1) )+2p )1/2
234212,

Hence the left side of .(A.11l) now becomes

- ppp3) = (potp3) (VBp,- (pot g)l/ ?)

= (pp+p§) (a(py)-alp,))

this verifies that (A.11l) is valid when Py = Pps and hence by
the reasoning at (A.13) verifes that (6.5) is valid for pé;pi(pp.

Calculation of n3» Tys> Mg 2and verification of (6.6):

We do not need explicit expressions for s Ty n5. These ex-

pressions could, however, be direcﬁly derived by substituting
(plpgyg—i-p2 12)/(pl p2) in (6.2). Note.that g = plpg/(pl p2)>
For verification of (6.6) it suffices to note that |
Ty + mgny - a = inf{vy: vy satisfies (6.2) and (6.3) for Q,(-a)}
and my, + TNy + & - sup{v vy satisfies (6.2) and (6.3) fbr
Q,(+a)}. Consequently

2 2)1/2

Ny + Mgmy-as- d+Cqy=8q - ~k(p potp3 a

and

)1/2

3

my + n5n2+a=a+m1n(d2+02+612+k(p1+p3

c.)

§2+c2—(d2—d3)-(c2- 3
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It can be calculated that in any case

|
2 2.1/ B
my + mgngta 2 d2+02+612+k(p1+p3) —2(01*03)+?.

‘because of the lower bound, 6, ) "(dl+d2)+(cl”02)’f in (6.1)
and (A2) (with py substituted for p,, etc.). Hence

(mgtngmy-a)+(mytngnyia) 2 ~dy+eq-k(p5+p2) ¥ 2 te,

2 2)1/2

+ k(p§+p§)1/2_2(cl_¢3) 2 k(p2kpl 2,,2)1/2

—k(p2+p3

- (43-d,)-(eq-c;) > ©
by (A.9). This verifies‘(6.6).

Verification of (6.8): If v ¢ 52(¢a) then v must satisfy

one of the inequalities

vy-vy ¢ -k(pSp2) M 2ez(c

| 173)
(A.14) vy=v, ¢ E(pPp2) 242 (e, -c,)

1 2
2)1/2+2(

vy-vg { -k(p5tps e mCy)

2773

2

Suppose the second. Then, by the defining condition of % (1)

b vl—v2+v2—vg<g

2, B :
- k(pytps) / +2(c1—ce)+d2—d3+c2—03

:-k(p§+pg)1/2+(d2-d3)—(c2—c3)+2(cl—c3)

< -k(pf+p§)1/2+2(c

1753
as in (A.8). Hence the second inequality implies the first. Suppose

the third. Then

- " N _ _ ) T 2. 2.1/2
Vy V3 = VsV kv < (dl d2)4(cl 02) k(p2+p3)

+ 2(cpeq) = ~k(pSrp2) - (a-a,) - (cy-c ) +2(cqcy).



-3k

Hence the third inequality directly implies (6.8). Finally, the

first inequality implies (6.8) since

1/2 '
~k(p] + p3) i < -K(p5 + pg)l/2

1/2 ' 1/2
2 2 2 2
~k( pp—l + pl) + k( pp-l + Pg)
2 1/2
= -k(py + p3) 77 - (4g - dp) (e - cp)

by (A.9).

Verification of (6.9): The defining property of QB(l)' includes

the condition

(A.15) v, < 3+ (a, - d3) + ey = 03).
However,

' 1/2 s, 1/2
b3 + K(pf + p5) " < -k(p5 + p3)

< (dy-a5) + (e5-eg)e

Hence the condition stated in (6.9) already implies (A.15). The
remaining assertions implicit in (6.8)-(6.10) can be directly

checked from the definition of Q3(l)’

Verification of (6.11): The constants n6 and ﬂ7 are the
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same as M, and > with the roles of Ps and P3 interchanged.
Hence we need to verify

= 1

for all 813 satisfying (6.8). This is equivalent to
2 1/2
(pl = 93)(k(92 o 93) -+ (dl—-dz)
+ (e; -c,) ~2(cl-c3)) >
(Pl+ pB)( B_Cl”CE)‘
Note that the.right side is independent of p2 and

k{pg+ p§)1/2 + (dl_de) *+ (Cl_CE)

1/2 1/2 5 1/2
= k(o2 + 022 e (02, + 2P (2, + 0D
12 s 1/2 178
< x[(2 i (p§l+ SN (p§_1+ p2) .

Hence it suffices to. show

0 1/2 0. 1/2
(pF - P2 (x(2p5) " +x(p5_,

(p2 1 + 05)77) - 2ey -eq))

=K(p] - pg)(( 93) + (pp + p7)

I
—
o

Now,



=85

1/2 /0
21y 2 2
(g ¥p3) '£7 + 253
|

(32 2. -
=(pp-p3)" + 2p3p, + 2p3 y |

2)

- 2 2
“(pp+p3 '2(2P3)

"2'»/5 93( pg + 93) |

since (pp+p3) -42(p

In view of this it suffices to show
o 5.1/2

(o5 - p%)(pB + Bk el s \r g _
¢ ‘ 1/2 s .
2 (pg+ P%)((PEJF p%) .—(p§+ pg) )

this expression is the same as (A.11) with P3 substituted for Po
Hence this expression is a valid inequality and the verification of
(6.11) is complete.

Verification of (6.12): Reasoning as in the verification of

(6.6) we have that Mo > 0 and

g + n9 + ﬂlo(”6 + ﬂY) = -d; + cq + d; - d,
'(Cl"c2)) + (d3 + 03) g 613

1/2
+ k(pi +'p§) > max(-(d; + d,)

1/2

+.(cy + c,) + k(pi + pg) > =(dy-dg)
1/2 142

+ep+ ey - x(pl+ pD) 4 k(pFx p2))

Now,

1/2 1/2 \
k(p] + p5) " - k(pF + p5)7 - (d,-ay)
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1/2 1/2
v 2 24 2 o
t(ep+ e3) > ol + pp) - - K(p] + p3)
2 g, 1/2 2 o 1/2 |
-k(pp+p2) +k(pp+ 3) > 04
This verifies (6.12).
Verification of (6.14): Since
Vq =V, > _(dl"de? + (cl-cg) = '(dl"de)
_ 2,1/2 2 2
~(eq-e,) + 2(ey-cy) = (ppl Py + x(po g + o3
1/2
. t2cg-cy) > k(pf+ pD) T 4 2(cy -cy)
if follows that either
1/2
vp-vs € (p2 + o) 2(ep-cy)
or
Vp =Vg=Vy-¥y + V3 ~V3
1/2
2
g: dl_d2 o (cl"ce) "k(pl e 93)
+ 2(c]_- 03)
= -k(pi + pg) + (dl"dE) + (cl-cz)
+ 2(c2-03)
5 s, 1/2 s, 1/2
=-k(py +p3) "~ + K(pj o + 91
2 2,1/2
-k(pp_l - p2) + 2(c2-c3)
1/2
2 2
< "k( [32 ps) + 2(02"03)

Hence the former. inequality concerning v

-V

2 "3

is the proper
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expression for (6.14).

Verification for (6.15): It is necessary to check that (6.15)

1/2
implies vy-Vs3 P —k(pi + pg) / . Now, (6.15) yields

vl-v3 " Wy Wy v2"v3 > '(dl'dg)

+ (ey -c)) _k(pg " pg)l/e

= -k( p; + pi) 1/2+ X( pg + p§> 1/2- k( pg ¥ pg) 13
> x(pd + 95)1/2

which verifies the desired property.

Verification for (6.17):

It is necessary to verify the analogs of properties (6.5) and
(6.6). The first of these properties will be verified if
(1752 ¢ l/le)(-d + d,y + ¢, + Cs)
kg PaivEe T S T NR T Sy

-

~855(1/p5 - 1/pp) > o

. where § 3 satisfies (6.11). Note that this expression is exactly

2
(A%) with (p2’ p3) substituted for (pl, p2). Hence this expression
is valid. 3

The analog of (6.6) requires

-d, + €, = (dl-de) + (cl-cg)

| 2 2,1/2
+ 634"03-k(p2 + p3) + 2(c2-03)
1/2",
+ k(pi + pg) >0

The left side of this expression is greater than
1/2

2 2
-4, + d3+ cy-cg k(pl+ pe)
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1/2 1/2
-k(pg + pg) ==—k(p§ + o) |
|
|
1/2 e T 17 11/2.
+ k(pg + pg) + k(pi $ pg) & k(pg + pgz

:> 0.

This verifies the desired property.

"Postscript (A conjecture): The method of proof used in Sections

5, 6 is not-in principle-limited to the cases p = 4,5. Take, for
example, the case p = 6 and assume Py % Po 2 p3 Z Py One can
still define sets Sl(ta) and Sé(ta) analogous to those in Section

6. ILemma 4.1 still yields Pr(Sl(-a)) g Pr(Sl(a)). The sets S,(+a)

A
can be broken into several disjoint pieces in analogy with the sets

Qj(i) of Section 6. The first of these sets - Qy (or Qe(l)) =

could be written as
(A- 16) Q-g('i_‘a-) = {(yl’ T o V33 VJ-F):
Yy, = by, satisfies (6.1) with py in place of P
ny(6yp)+a vy < ny (615)+a, ng (8y5)
+ g ¥, vy Kmy (835) + n5 ¥y s
n 1/2

lvg -yl < x(p5 + o)

- * * i
where ny - Mg are as in (6.4) and N3, Ty are the same as Ngs My
but with p), substituted for P3 Now, consider this set and the

remark following Lemma 4.2. Expression (A 16) can be rewritten as

Q,‘?('ff'_a-) = [(le '.Y2', V3; VLL): yl = 612
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satisfies the appropriate version of (6.1),

(8y5) ta <lyé <y (895) ta

(vyr vy) e R N5 (35 = (M9(835) + nyl 512)('2);612)}

where

(A17) - RU(E, 8yp) = {(vg vy B(85,) < vg-t

< gz (612)5 €3 (612)< V)_l_ -t

(Here €ys+++s6) could be expressed explicitly in terms of the

preceding constants.) According to (4.7) it will follow that

(818)  Pr(qy-a)) > Pr(ay(+a))
if _
(a19) Pr(R(-t, 89,)) > Pr(R (%, 8y,))

for the appropriate values of & and t ) O.

12
Now observe that B*(tt, 512) are sets of the same gqualitative

form as S(+t), defined in (2.6) and treated in detail in Section 5.
. The only difference is that the constants 51 - gu have different
explicit expressions than the corresponding terms in the definition
(2.6) of S(+a). If it were not for this difference then (A 19)
would have already been proven in Section 5 and the desired (A 18)
would immediately follow.

Perhaps, however, (A 19) can be proven by thé same steps as those
of Section 5. Better yet, perhaps the setup in Section 5 can be
weakened to prove a correspondingly stronger result which includes both

Lemmas 5.1 and 5.2 and (A 19). If so then (A 18) would follow by
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this stronger result and induction. If this could be done for all

the sets Qj(i) then Conjectufe 1 would follow for p = 6. |
One might even hope that the above remarks could form the

basis of an inductive proof of Conjecture 1 for all - The master

key to constructing such a proof would of course be to formulate

the appropriate stronger version referred to above of the results in

Section 5.
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Corrections to "A proof that Kramer's Multiple Comparison Procedure

is Level-a", revised December 1979.

Lo The reference listed as Dunnett (1979) has now appeared. It
should now be referenced as,

Dunnett, C. W. (1980). Pairwise multiple comparisons in the
homogeneous variance, unequal sample size case. Jour.
Amer. Statist. Assoe. 75, 789-795. |

It should thus be referred to in the manuscript as Dunnett
(1980) instead of Dunnett (1979).

2. The procedure should be referred to throughout as the Tukey-
Kramer method. For example, the title should read "A proof that
the Tukey-Kramer multiple comparison procedure ... etc.”

3, p.13, line 3 should read: section; as well as p =4 ... etc.
4. . The following acknowledgment should be added on p.40:
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